Introducing Data Mining and Knowledge Discovery

Copyright © 2002, Idea Group Publishing. The terms Data Mining (DM) and Knowledge Discovery in Databases (KDD) have been used interchangeably in practice. Strictly speaking, KDD is the umbrella of the mining process and DM is only a step in KDD. We will follow this distinction in this chapter and present a simple introduction to the Knowledge Discovery in Databases process from an optimization perspective.

[1]  Cliff T. Ragsdale,et al.  Spreadsheet modeling and decision analysis , 1996 .

[2]  Christopher H. Bryant,et al.  Knowledge discovery in databases: application to chromatography , 1998 .

[3]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[4]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[5]  Hussein A. Abbass,et al.  C-Net: A Method for Generating Non-deterministic and Dynamic Multivariate Decision Trees , 2001, Knowledge and Information Systems.

[6]  Paul S. Bradley,et al.  Mathematical Programming for Data Mining: Formulations and Challenges , 1999, INFORMS J. Comput..

[7]  Jan M. Zytkow,et al.  From Contingency Tables to Various Forms of Knowledge in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[8]  Toshinori Munakata,et al.  Knowledge discovery , 1999, Commun. ACM.

[9]  Adil M. Bagirov,et al.  A Heuristic Algorithm for Feature Selection Based on Optimization Techniques , 2002 .

[10]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[11]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[12]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[13]  Paul S. Bradley,et al.  Clustering via Concave Minimization , 1996, NIPS.

[14]  Fausto Giunchiglia,et al.  A Theory of Abstraction , 1992, Artif. Intell..

[15]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[16]  Michael Y. Hu,et al.  A simulation study of artificial neural networks for nonlinear time-series forecasting , 2001, Comput. Oper. Res..

[17]  Olvi L. Mangasarian,et al.  Mathematical Programming in Data Mining , 1997, Data Mining and Knowledge Discovery.

[18]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[19]  Padhraic Smyth,et al.  Knowledge Discovery and Data Mining: Towards a Unifying Framework , 1996, KDD.

[20]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[21]  Usama M. Fayyad,et al.  Data mining and KDD: Promise and challenges , 1997, Future Gener. Comput. Syst..

[22]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[23]  George H. John Enhancements to the data mining process , 1997 .

[24]  Paul S. Bradley,et al.  Feature Selection via Mathematical Programming , 1997, INFORMS J. Comput..

[25]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[26]  J. Keith Ord,et al.  Automatic neural network modeling for univariate time series , 2000 .

[27]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[28]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[29]  S. C. Hui,et al.  Data mining for customer service support , 2000, Inf. Manag..

[30]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[31]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[32]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[33]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .