We have derived a panel of CD4+, TCR-alpha/beta + T cell clones from SJL (H-2s) mice specific for an encephalitogenic determinant of myelin proteolipid protein (PLP) 139-151 (HSLGKWLGHPDKF). All the clones are Ag specific and IAs restricted, but they show heterogeneity in their ability to induce experimental allergic encephalomyelitis (EAE), i.e., one group induces EAE in naive mice, a second group induces disease only in mice that are pretreated with pertussis and irradiation, whereas a third group is essentially nonencephalitogenic. To determine the basis for this functional heterogeneity, the clones were tested for the expression of adhesion molecules and cytokines and for Ag-specific cytolytic activity. All of the clones expressed comparable levels of LFA-1 and CD44 but lacked expression of Mel 14. However, those clones that induced EAE only in irradiation- and pertussis-treated recipients did not express VLA4. Because pretreatment with pertussis has been suggested to increase permeability of the blood-brain barrier and facilitate migration of T cells into the central nervous system, the absence of VLA4 on this group of clones may account for the need for pretreatment to induce EAE. The nonencephalitogenic clones expressed all of the adhesion molecules tested but were not cytolytic in vitro and failed to produce one or more of the proinflammatory cytokines after Ag-specific stimulation. One nonencephalitogenic clone that did not produce many cytokines on activation with specific Ag, however, could be activated with Con A to express mRNA for most cytokines and this was accompanied by a concomitant change in the encephalitogenic potency of this clone. These results suggest that adhesion molecules and cytokines both play a critical role in the encephalitogenicity of PLP peptide-specific T cell clones. Furthermore, the nonencephalitogenicity of some clones may be related to a defect in Ag-mediated activation.