Evolutionary biology of centipedes (Myriapoda: Chilopoda).

New insights into the anatomy, systematics, and biogeography of centipedes have put these predatory terrestrial arthropods at the forefront of evolutionary studies. Centipedes have also played a pivotal role in understanding high-level arthropod relationships. Their deep evolutionary history, with a fossil record spanning 420 million years, explains their current worldwide distribution. Recent analyses of combined morphological and molecular data provide a stable phylogeny that underpins evolutionary interpretations of their biology. The centipede trunk, with its first pair of legs modified into a venom-delivering organ followed by 15 to 191 leg pairs, is a focus of arthropod segmentation studies. Gene expression studies and phylogenetics shed light on key questions in evolutionary developmental biology concerning the often group-specific fixed number of trunk segments, how some centipedes add segments after hatching whereas others hatch with the complete segment count, the addition of segments through evolution, and the invariably odd number of leg-bearing trunk segments.

[1]  G. Edgecombe,et al.  A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda : Chilopoda) , 2006 .

[2]  G. Edgecombe,et al.  The importance of looking at small-scale patterns when inferring Gondwanan biogeography : a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae) , 2006 .

[3]  C. Müller,et al.  Fine structural description of the lateral ocellus of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha) and phylogenetic considerations , 2006, Journal of morphology.

[4]  C. Müller,et al.  Ultrastructural organization of the anal organs in the anal capsule of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha) , 2006, Journal of morphology.

[5]  G. Hilken,et al.  Ultrastructure of the maxillary organ of Scutigera coleoptrata (Chilopoda, Notostigmophora): Description of a multifunctional head organ , 2006, Journal of morphology.

[6]  A. Fausto,et al.  Spermatophore development and sperm ultrastructure inCraterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) , 1996, Zoomorphology.

[7]  Gonzalo Giribet,et al.  Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology , 2006, Proceedings of the Royal Society B: Biological Sciences.

[8]  V. Meyer-Rochow,et al.  Fine structural organization of the lateral ocelli in two species of Scolopendra (Chilopoda: Pleurostigmophora): an evolutionary evaluation , 2006, Zoomorphology.

[9]  J. Shultz,et al.  Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[10]  P. Whitington,et al.  Segmentation, neurogenesis and formation of early axonal pathways in the centipede,Ethmostigmus rubripes (Brandt) , 1991, Roux's archives of developmental biology.

[11]  Jafet,et al.  Predation by Giant Centipedes , Scolopendra gigantea , on Three Species of Bats in a Venezuelan Cave , 2005 .

[12]  J. Shultz,et al.  Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. , 2005, Molecular phylogenetics and evolution.

[13]  H. Wolf,et al.  From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept , 2005, Development Genes and Evolution.

[14]  A. Stollewerk,et al.  Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects , 2004, Development Genes and Evolution.

[15]  M. Akam,et al.  A Double Segment Periodicity Underlies Segment Generation in Centipede Development , 2004, Current Biology.

[16]  G. Edgecombe,et al.  Molecular phylogeny of Australasian anopsobiine centipedes (Chilopoda : Lithobiomorpha) , 2004 .

[17]  Gonzalo Giribet,et al.  Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci , 2004 .

[18]  J. Shultz,et al.  Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. , 2004, Molecular phylogenetics and evolution.

[19]  G. Valle,et al.  The mitochondrial genome of the house centipede scutigera and the monophyly versus paraphyly of myriapods. , 2004, Molecular biology and evolution.

[20]  M. Akam,et al.  Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha) , 2004, Evolution & development.

[21]  S. Harzsch Phylogenetic comparison of serotonin‐immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: Implications for arthropod relationships , 2004, Journal of morphology.

[22]  G. Edgecombe Monophyly of Lithobiomorpha (Chilopoda): New characters from the pretarsal claws , 2004 .

[23]  G. Edgecombe Morphological data, extant Myriapoda, and the myriapod stem-group , 2004 .

[24]  S Blair Hedges,et al.  The colonization of land by animals: molecular phylogeny and divergence times among arthropods. , 2004, BMC biology.

[25]  A. Minelli,et al.  Evolutionary trends and patterns in centipede segment number based on a cladistic analysis of Mecistocephalidae (Chilopoda: Geophilomorpha) , 2003 .

[26]  V. Meyer-Rochow,et al.  The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept , 2003, Zoomorphology.

[27]  S. Richter,et al.  The mandibular gnathal edges : homologous structures throughout Mandibulata? , 2003 .

[28]  M. Koch Monophyly of the Myriapoda? Reliability of current arguments , 2003 .

[29]  G. Edgecombe,et al.  Relationships of Henicopidae (Chilopoda: Lithobiomorpha): New molecular data, classification and biogeography , 2003 .

[30]  T. Burmester,et al.  Complete subunit sequences, structure and evolution of the 6 x 6-mer hemocyanin from the common house centipede, Scutigera coleoptrata. , 2003, European journal of biochemistry.

[31]  A. Stollewerk,et al.  Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects , 2003, Development.

[32]  N. Trewin,et al.  An Early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland , 2003 .

[33]  Helen Arthur,et al.  The pattern of segment formation, as revealed by engrailed expression, in a centipede with a variable number of segments , 2003, Evolution & development.

[34]  H. Wilson A NEW SCOLOPENDROMORPH CENTIPEDE (MYRIAPODA: CHILOPODA) FROM THE LOWER CRETACEOUS (APTIAN) OF BRAZIL , 2003 .

[35]  T. Kaufman,et al.  Hox genes and the evolution of the arthropod body plan 1 , 2002, Evolution & development.

[36]  N. Strausfeld,et al.  Common design in a unique midline neuropil in the brains of arthropods. , 2002, Arthropod structure & development.

[37]  T. Kaufman,et al.  Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. , 2002, Developmental biology.

[38]  G. Pass,et al.  The circulatory system in Chilopoda: functional morphology and phylogenetic aspects , 2002 .

[39]  T. Kaufman,et al.  Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. , 2002, Development.

[40]  W. Wheeler,et al.  Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci , 2002 .

[41]  C. Bitsch,et al.  The endoskeletal structures in arthropods: cytology, morphology and evolution. , 2002, Arthropod structure & development.

[42]  A. Minelli,et al.  Parental Care in Dicellophilus carniolensis (C. L. Koch, 1847): New Behavioural Evidence with Implications for the Higher Phylogeny of Centipedes (Chilopoda) , 2002 .

[43]  A. Minelli,et al.  Hox gene sequences from the geophilomorph centipede Pachymerium ferrugineum (C. L. Koch, 1835) (Chilopoda: Geophilomorpha: Geophilidae): implications for the evolution of the Hox class genes of arthropods. , 2002, Molecular phylogenetics and evolution.

[44]  A. Minelli,et al.  Analysis of segment number and enzyme variation in a centipede reveals a cryptic species, Geophilus easoni sp. nov., and raises questions about speciation , 2001 .

[45]  A. Minelli,et al.  engrailed sequences from four centipede orders: strong sequence conservation, duplications and phylogeny , 2001, Development Genes and Evolution.

[46]  M. Klingler,et al.  Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages , 2001, Development Genes and Evolution.

[47]  Gonzalo Giribet,et al.  Arthropod phylogeny based on eight molecular loci and morphology , 2001, Nature.

[48]  D. Tautz,et al.  Mitochondrial protein phylogeny joins myriapods with chelicerates , 2001, Nature.

[49]  M. Akam,et al.  Hox genes and the phylogeny of the arthropods , 2001, Current Biology.

[50]  H. Wilson First Mesozoic Scutigeromorph Centipede, from the Lower Cretaceous of Brazil , 2001 .

[51]  O. Kraus Myriapoda and the ancestry of the hexapoda , 2001 .

[52]  R. Norris,et al.  Centipede envenomation. , 2001, Wilderness & environmental medicine.

[53]  W. Arthur,et al.  Geographic patterning of variation in segment number in geophilomorph centipedes: clines and speciation , 2001, Evolution & development.

[54]  M. Harvey,et al.  SHORT COMMUNICATION How many Arachnida and Myriapoda are there world-wide and in Amazonia? , 2000 .

[55]  W. Arthur,et al.  Latitudinal cline in segment number in an arthropod species, Strigamia maritima , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  Alessandro Minelli,et al.  The evolution of segmentation of centipede trunk and appendages , 2000 .

[57]  A. Minelli Holomeric vs. meromeric segmentation: a tale of centipedes, leeches, and rhombomeres , 2000, Evolution & development.

[58]  A. Minelli,et al.  Phylogeny of geophilomorph centipedes: old wisdom and new insights from morphology , 2000 .

[59]  A. Minelli,et al.  Homeotic transformation in a centipede. , 1999, Trends in genetics : TIG.

[60]  N. Patel,et al.  Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. , 1999, Development.

[61]  S. Carranza,et al.  Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  N. Strausfeld Crustacean – Insect Relationships: The Use of Brain Characters to Derive Phylogeny amongst Segmented Invertebrates , 1998, Brain, Behavior and Evolution.

[63]  G. Scholtz,et al.  The pattern of Distal-less expression in the mouthparts of crustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common origin of Mandibulata. , 1998, The International journal of developmental biology.

[64]  D. Martill,et al.  A new centipede (Arthropoda, Chilopoda) from the Crato Formation (Lower Cretaceous, Aptian) of N. E. Brazil , 1998 .

[65]  T. Kaufman,et al.  Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures , 1998, Development Genes and Evolution.

[66]  P. Selden,et al.  Centiped legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. American Museum novitates ; no. 3231 , 1998 .

[67]  S. Carroll,et al.  Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade , 1997, Current Biology.

[68]  R. Mesibov,et al.  Preliminary data on the anatomy of the genital systems in Craterostigmus tasmanianus (Craterostigmomorpha) and Esastigmatobius longitarsis (Henicopidae, Lithobiomorpha) (Chilopoda) , 1996 .

[69]  C. Prunescu Plesiomorphic and apomorphic characters states in the class Chilopoda , 1996 .

[70]  O. Kraus,et al.  On myriapod / insect interrelationships , 1996 .

[71]  O. Kraus,et al.  Phylogenetic system of the Tracheata (Mandibulata) on "Myriapoda"-Insecta, interrelationships, phylogenetic age and primary ecological niches , 1994 .

[72]  H. Enghoff,et al.  Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations , 1993 .

[73]  E. Eason On the Taxonomy and Geographical Distribution of the Lithobiomorpha , 1992 .

[74]  H. Heatwole,et al.  Venom apparatus and toxicity of the centipede Ethmostigmus rubripes (Chilopoda, Scolopendridae) , 1990, Journal of morphology.

[75]  J. Wägele Evolution und phylogenetisches System der Isopoda , 1989 .

[76]  W. Shear,et al.  Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centiped orders. American Museum novitates ; no. 2927 , 1988 .

[77]  K. V. van Holde,et al.  Centipedal hemocyanin: its structure and its implications for arthropod phylogeny. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[78]  W. Dohle Phylogenetic pathways in the Chilopoda , 1985 .

[79]  W. Dohle Sind die Myriapoden eine monophyletische Gruppe? Eine Diskussion der Verwandtschaftsbeziehungen der Antennaten , 1980 .

[80]  P. Mundel THE CENTIPEDES (CHILOPODA) OF THE MAZON CREEK , 1979 .

[81]  S. Manton,et al.  The evolution of arthropodan locomotory mechanisms , 1972 .

[82]  S. Manton Mandibular mechanisms and evolution of arthropods , 1964, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[83]  R. Heymons Die Entwicklungsgeschichte der Scolopender / von Dr. Richard Heymons. , 1901 .