Differential analysis of RNA-Seq incorporating quantification uncertainty

We describe a novel method for the differential analysis of RNA-Seq data that utilizes bootstrapping in conjunction with response error linear modeling to decouple biological variance from inferential variance. The method is implemented in an interactive shiny app called sleuth that utilizes kallisto quantifications and bootstraps for fast and accurate analysis of RNA-Seq experiments.

[1]  Robert Tibshirani,et al.  Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data , 2013, Statistical methods in medical research.

[2]  Dmitri D. Pervouchine,et al.  A benchmark for RNA-seq quantification pipelines , 2016, Genome Biology.

[3]  Sven Rahmann,et al.  Genome analysis , 2022 .

[4]  Alyssa C. Frazee,et al.  Polyester: Simulating RNA-Seq Datasets With Differential Transcript Expression , 2014, bioRxiv.

[5]  Mark D. Robinson,et al.  Moderated statistical tests for assessing differences in tag abundance , 2007, Bioinform..

[6]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[7]  Daniel Bottomly,et al.  Evaluating Gene Expression in C57BL/6J and DBA/2J Mouse Striatum Using RNA-Seq and Microarrays , 2011, PloS one.

[8]  Laura L. Elo,et al.  Comparison of software packages for detecting differential expression in RNA-seq studies , 2013, Briefings Bioinform..

[9]  R. Tibshirani,et al.  Normalization, testing, and false discovery rate estimation for RNA-sequencing data. , 2012, Biostatistics.

[10]  Wing Hung Wong,et al.  Statistical inferences for isoform expression in RNA-Seq , 2009, Bioinform..

[11]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[12]  David M. Rocke,et al.  Controlling False Positive Rates in Methods for Differential Gene Expression Analysis using RNA-Seq Data , 2015, bioRxiv.

[13]  J. Carpten,et al.  Translating RNA sequencing into clinical diagnostics: opportunities and challenges , 2016, Nature Reviews Genetics.

[14]  Jeff H. Chang,et al.  The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq , 2011 .

[15]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[16]  Thomas J. Hardcastle,et al.  baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data , 2010, BMC Bioinformatics.

[17]  Giuseppe Testa,et al.  RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods , 2016, Nucleic acids research.

[18]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[19]  Ning Leng,et al.  EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments , 2013, Bioinform..

[20]  Antti Honkela,et al.  Fast and accurate approximate inference of transcript expression from RNA-seq data , 2014, Bioinform..

[21]  M. Robinson,et al.  Small-sample estimation of negative binomial dispersion, with applications to SAGE data. , 2007, Biostatistics.

[22]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[23]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[24]  Colin N. Dewey,et al.  RNA-Seq gene expression estimation with read mapping uncertainty , 2009, Bioinform..

[25]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[26]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[27]  L. Pachter Models for transcript quantification from RNA-Seq , 2011, 1104.3889.

[28]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[29]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[30]  Antti Honkela,et al.  Identifying differentially expressed transcripts from RNA-seq data with biological variation , 2011, Bioinform..

[31]  Ning Leng,et al.  EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments , 2013, Bioinform..

[32]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[33]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[34]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[35]  John P. Buonaccorsi,et al.  Measurement Error: Models, Methods, and Applications , 2010 .

[36]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..