The space of fuzzy set-valued square integrable martingales

In this paper, we shall introduce the concept of a fuzzy set-valued square integrable martingale, define a metric between two fuzzy set-valued square integrable martingales. Then we prove that the family of all right-continuous fuzzy set-valued square integrable martingales with respect to the metric is a complete space and the family of all continuous fuzzy set-valued square integrable martingales is its closed subset. This discussion will be useful in the study of fuzzy set-valued stochastic integrals, stochastic differential equations with applications in finance.

[1]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation , 1985 .

[2]  Yukio Ogura,et al.  Convergence of set valued sub- and supermartingales in the Kuratowski-Mosco sense , 1998 .

[3]  M. Puri,et al.  Convergence theorem for fuzzy martingales , 1991 .

[4]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 2. Set valued martingales and set valued measures , 1985 .

[5]  Christian Hess,et al.  On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence , 1991 .

[6]  Yukio Ogura,et al.  Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..

[7]  Guo Wei,et al.  On Choquet theorem for random upper semicontinuous functions , 2007, Int. J. Approx. Reason..

[8]  Yukio Ogura,et al.  A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric H[infin] , 2003, Fuzzy Sets Syst..

[9]  Sitadri Bagchi On a. s. convergence of classes of multivalued asymptotic martingales , 1985 .

[10]  Zhen Wang,et al.  On convergence and closedness of multivalued martingales , 1994 .

[11]  A. Korvin,et al.  A convergence theorem for convex set valued supermartingales , 1985 .

[12]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[13]  Aihong Ren,et al.  Representation theorems, set-valued and fuzzy set-valued Ito integral , 2007, Fuzzy Sets Syst..

[14]  Ioannis Karatzas,et al.  Lectures on the Mathematics of Finance , 1996 .

[15]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[16]  Shoumei Li,et al.  Decomposition and representation theorem of set-valued amarts , 2007, Int. J. Approx. Reason..

[17]  Dinh Quang Luu Applications of set-valued Radon-Nikodym theorems to convergence of multivalued $L^1$-amarts. , 1984 .

[18]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[19]  Nikolaos S. Papageorgiou On the conditional expectation and convergence properties of random sets , 1995 .

[20]  S. Shreve Stochastic calculus for finance , 2004 .

[21]  V. Kreinovich,et al.  Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables , 2002 .