Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties

Abstract The objective of the study is to develop a novel toughened polylactic acid (PLA) nanocomposite. The effects of linear low density polyethylene (LLDPE) and organophilic modified montmorillonite (MMT) on mechanical, thermal and morphological properties of PLA were investigated. LLDPE toughened PLA nanocomposites consisting of PLA/LLDPE blends, of composition 100/0 and 90/10 with MMT content of 2 phr and 4 phr were prepared. The Young’s and flexural modulus improved with increasing content of MMT indicating that MMT is effective in increasing stiffness of LLDPE toughened PLA nanocomposite even at low content. LLDPE improved the impact strength of PLA nanocomposites with a sacrifice of tensile and flexural strength. The tensile and flexural strength also decreased with increasing content of MMT in PLA/LLDPE nanocomposites. The impact strength and elongation at break of LLDPE toughened PLA nanocomposites also declined steadily with increasing loadings of MMT. The crystallization temperature and glass transition temperature dropped gradually while the thermal stability of PLA improved with addition of MMT in PLA/LLDPE nanocomposites. The storage modulus of PLA/LLDPE nanocomposites below glass transition temperature increased with increasing content of MMT. X-ray diffraction and transmission electron microscope studies revealed that an intercalated LLDPE toughened PLA nanocomposite was successfully prepared at 2 phr MMT content.

[1]  Sung Chul Yoon,et al.  Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. , 2003, Biomaterials.

[2]  P. Dubois,et al.  Poly(epsilon-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide , 2002 .

[3]  Samir Kumar Pal,et al.  Effect of fillers and nitrile blended PVC on natural rubber/high styrene rubber with nanosilica blends: Morphology and wear , 2010 .

[4]  M. Pluta Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization , 2004 .

[5]  Z. Ishak,et al.  Effect of Organoclay and Ethylene-Octene Copolymer Inclusion on the Morphology and Mechanical Properties of Polyamide/Polypropylene Blends , 2006 .

[6]  Chow Wen Shyang,et al.  Flexural, Morphological and Thermal Properties of Poly(Lactic Acid)/ Organo-Montmorillonite Nanocomposites , 2008 .

[7]  P. Dubois,et al.  Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo‐modification on the physico‐chemical properties , 2006 .

[8]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[9]  N. Capiati,et al.  Linear low-density polyethylene addition to polypropylene/elastomer blends: Phase structure and impact properties , 1996 .

[10]  Michael P. Wolcott,et al.  Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms , 2007 .

[11]  E. Piorkowska,et al.  Crystallization, structure and properties of plasticized poly(l-lactide) , 2005 .

[12]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials , 2003 .

[13]  S. Qutubuddin,et al.  Synthesis of polystyrene–clay nanocomposites , 2000 .

[14]  S. Ray,et al.  New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties , 2002 .

[15]  S. Lim,et al.  Toughening of polylactide by melt blending with linear low‐density polyethylene , 2003 .

[16]  S. Ramazani,et al.  Melt preparation and investigation of properties of toughened Polyamide 66 with SEBS-g-MA and their nanocomposites , 2008 .

[17]  L. Cabedo,et al.  Development of amorphous PLA-montmorillonite nanocomposites , 2005 .

[18]  P. Dubois,et al.  Plasticized polylactide/clay nanocomposites. II. The effect of aging on structure and properties in relation to the filler content and the nature of its organo‐modification , 2006 .

[19]  Kristiina Oksman,et al.  Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement , 2006 .

[20]  P. Degée,et al.  New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study , 2003 .

[21]  H. Fritz,et al.  Plasticizing polylactide—the effect of different plasticizers on the mechanical properties , 1999 .

[22]  J. Lim,et al.  Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly(ethylene-co-octene) , 2006 .

[23]  E. Wintermantel,et al.  Thermal and mechanical properties of plasticized poly(L‐lactic acid) , 2003 .

[24]  Liang Wu,et al.  Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites , 2007 .

[25]  Tzong‐Ming Wu,et al.  Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization , 2006 .

[26]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties , 2003 .

[27]  M. Pluta Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites , 2006 .

[28]  Mat Uzir Wahit,et al.  The Effect of Polyethylene-Octene Elastomer on the Morphological and Mechanical Properties of Polyamide 6/Polypropylene Nanocomposites , 2005 .

[29]  S. Ray,et al.  Crystallization Behavior and Morphology of Biodegradable Polylactide/ Layered Silicate Nanocomposite , 2003 .

[30]  E. Giannelis,et al.  Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II) , 2003 .

[31]  Azman Hassan,et al.  Mechanical and morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2 , 2003 .

[32]  David P. Ziegler,et al.  Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films , 2005 .