Spectral efficiency in the wideband regime

The tradeoff of spectral efficiency (b/s/Hz) versus energy-per-information bit is the key measure of channel capacity in the wideband power-limited regime. This paper finds the fundamental bandwidth-power tradeoff of a general class of channels in the wideband regime characterized by low, but nonzero, spectral efficiency and energy per bit close to the minimum value required for reliable communication. A new criterion for optimality of signaling in the wideband regime is proposed, which, in contrast to the traditional criterion, is meaningful for finite-bandwidth communication.

[1]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[2]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[3]  John R. Pierce Ultimate performance of M -ary transmissions on fading channels , 1966, IEEE Trans. Inf. Theory.

[4]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[5]  Thomas L. Marzetta,et al.  Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.

[6]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[7]  Andrew J. Viterbi,et al.  Two different philosophies in CDMA-a comparison , 1996, Proceedings of Vehicular Technology Conference - VTC.

[8]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[9]  Chen-Nee Chuah,et al.  Capacity scaling in MIMO Wireless systems under correlated fading , 2002, IEEE Trans. Inf. Theory.

[10]  R. Gallager Power Limited Channels: Coding, Multiaccess, and Spread Spectrum , 2002 .

[11]  Muriel Médard,et al.  Bandwidth scaling for fading multipath channels , 2002, IEEE Trans. Inf. Theory.

[12]  Sergio Verdú,et al.  Sensitivity of channel capacity , 1995, IEEE Trans. Inf. Theory.

[13]  Lizhong Zheng,et al.  Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel , 2002, IEEE Trans. Inf. Theory.

[14]  Robert J. McEliece,et al.  The theory of information and coding : a mathematical framework for communication , 1977 .

[15]  Gregory W. Wornell,et al.  Efficient use of side information in multiple-antenna data transmission over fading channels , 1998, IEEE J. Sel. Areas Commun..

[16]  Antonia Maria Tulino,et al.  Multiple-antenna capacity in the low-power regime , 2003, IEEE Trans. Inf. Theory.

[17]  E. Berlekamp Review: Robert J. McEliece, The theory of information and coding: A mathematical framework for communication , 1978 .

[18]  Ibrahim C. Abou-Faycal,et al.  The capacity of discrete-time memoryless Rayleigh-fading channels , 2001, IEEE Trans. Inf. Theory.

[19]  Robert Spayde Kennedy,et al.  Fading dispersive communication channels , 1969 .

[20]  I. Jacobs The asymptotic behavior of incoherent M-ary communication systems , 1963 .

[21]  Andrew J. Viterbi,et al.  Principles of Digital Communication and Coding , 1979 .

[22]  John S. Richters,et al.  Communication over fading dispersive channels. , 1967 .

[23]  Sergio Verdú,et al.  Second-order asymptotics of mutual information , 2004, IEEE Transactions on Information Theory.

[24]  Shlomo Shamai,et al.  Fading Channels: Information-Theoretic and Communication Aspects , 1998, IEEE Trans. Inf. Theory.

[25]  Upamanyu Madhow,et al.  Space-Time transmit precoding with imperfect feedback , 2001, IEEE Trans. Inf. Theory.

[26]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[27]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[28]  Antonia Maria Tulino,et al.  Capacity of multi-antenna channels in the low-power regime , 2002, Proceedings of the IEEE Information Theory Workshop.

[29]  Jørgen Bach Andersen,et al.  Array gain and capacity for known random channels with multiple element arrays at both ends , 2000, IEEE Journal on Selected Areas in Communications.

[30]  A. Viterbi Performance of an M -ary orthogonal communication system using stationary stochastic signals , 1967, IEEE Trans. Inf. Theory.

[31]  James L. Massey,et al.  Optimum sequence multisets for synchronous code-division multiple-access channels , 1994, IEEE Trans. Inf. Theory.

[32]  A. Goldsmith,et al.  On optimality of beamforming for multiple antenna systems with imperfect feedback , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[33]  Sergio Verdú,et al.  On channel capacity per unit cost , 1990, IEEE Trans. Inf. Theory.

[34]  Bruce E. Hajek,et al.  Broad-band fading channels: Signal burstiness and capacity , 2002, IEEE Trans. Inf. Theory.

[35]  Shlomo Shamai,et al.  The impact of frequency-flat fading on the spectral efficiency of CDMA , 2001, IEEE Trans. Inf. Theory.

[36]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[37]  S. Shamai,et al.  Fading channels: how perfect need "perfect side information" be? , 1999, Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253).

[38]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  James L. Massey,et al.  Proper complex random processes with applications to information theory , 1993, IEEE Trans. Inf. Theory.