Ultrafine intralath precipitation of V(C,N) in 12Cr-1MoWV (wt.%) ferritic/martensitic steel

[1]  S. W. Thompson,et al.  A quantitative evaluation of microalloy precipitation strengthening in martensite and bainite , 2019, Materials Science and Engineering: A.

[2]  G. Odette On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science , 2018 .

[3]  L. Tan,et al.  Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation , 2017 .

[4]  S. Peng,et al.  Independence of work hardening and precipitation strengthening in a nanocluster strengthened steel , 2017 .

[5]  Kevan D. Weaver,et al.  The Traveling Wave Reactor: Design and Development , 2016 .

[6]  G. Odette,et al.  Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa , 2016 .

[7]  G. R. Odette,et al.  Recent Progress in Developing and Qualifying Nanostructured Ferritic Alloys for Advanced Fission and Fusion Applications , 2014 .

[8]  W. Hoffelner Materials for Nuclear Plants , 2013 .

[9]  Nicholas Tsoulfanidis,et al.  The Nuclear Fuel Cycle , 2012 .

[10]  T. N. Baker Processes, microstructure and properties of vanadium microalloyed steels , 2009 .

[11]  Naoyuki Hashimoto,et al.  New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment , 2007 .

[12]  Gary S. Was,et al.  Fundamentals of radiation materials science , 2007 .

[13]  R. Klueh,et al.  Development of new nano-particle-strengthened martensitic steels , 2005 .

[14]  R. L. Klueh,et al.  Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors , 2005 .

[15]  S. Ozaki,et al.  Characterization of carbides at different boundaries of 9Cr-steel , 2004 .

[16]  Mychailo B. Toloczko,et al.  Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure , 2000 .

[17]  S. Zając,et al.  The Role Of Vanadium In Microalloyed Steels , 1999 .

[18]  R. Klueh,et al.  Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa , 1998 .

[19]  D. S. Gelles,et al.  Development of martensitic steels for high neutron damage applications , 1996 .

[20]  Akira Kohyama,et al.  Low-activation ferritic and martensitic steels for fusion application , 1996 .

[21]  F. Garner,et al.  Irradiation creep and void swelling of two LMR heats of HT9 at ∼ 400°C and 165 dpa , 1996 .

[22]  M. Bepari Effects of precipitates on strength and toughness of vanadium structural steels , 1990 .

[23]  G. Kulcinski,et al.  The effects of heat treatment on the microstructural evolution of HT-9 ferritic steel , 1989 .

[24]  P. Ferguson Mechanical properties of nitrogen-ferrite , 1985 .

[25]  S. Allen Foil thickness measurements from convergent-beam diffraction patterns , 1981 .

[26]  L. M. Brown Precipitation and Dispersion Hardening , 1979 .

[27]  E. Little,et al.  Radiation-Hardening and Recovery in Mild Steels and the Effects of Interstitial Nitrogen , 1970 .

[28]  E. Little,et al.  The Correlation of Radiation-Hardening with Interstitial Nitrogen Content in Mild Steels , 1970 .

[29]  D. Hull,et al.  Introduction to Dislocations , 1968 .