A Generative Model for the Joint Registration of Multiple Point Sets

This paper describes a probabilistic generative model and its associated algorithm to jointly register multiple point sets. The vast majority of state-of-the-art registration techniques select one of the sets as the “model” and perform pairwise alignments between the other sets and this set. The main drawback of this mode of operation is that there is no guarantee that the model-set is free of noise and outliers, which contaminates the estimation of the registration parameters. Unlike previous work, the proposed method treats all the point sets on an equal footing: they are realizations of a Gaussian mixture (GMM) and the registration is cast into a clustering problem. We formally derive an EM algorithm that estimates both the GMM parameters and the rotations and translations that map each individual set onto the “central” model. The mixture means play the role of the registered set of points while the variances provide rich information about the quality of the registration. We thoroughly validate the proposed method with challenging datasets, we compare it with several state-of-the-art methods, and we show its potential for fusing real depth data.

[1]  Radu Horaud,et al.  Projective alignment of range and parallax data , 2011, CVPR 2011.

[2]  JianBing,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011 .

[3]  Andrea Fusiello,et al.  Registration of Multiple Acoustic Range Views for Underwater Scene Reconstruction , 2002, Comput. Vis. Image Underst..

[4]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[6]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Radu Horaud,et al.  Automatic detection of calibration grids in time-of-flight images , 2014, Comput. Vis. Image Underst..

[8]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  John B. Moore,et al.  Optimisation-on-a-manifold for global registration of multiple 3D point sets , 2007, Int. J. Intell. Syst. Technol. Appl..

[10]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[11]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[12]  John A. Williams,et al.  Simultaneous Registration of Multiple Corresponding Point Sets , 2001, Comput. Vis. Image Underst..

[13]  Andrea Torsello,et al.  Multiview registration via graph diffusion of dual quaternions , 2011, CVPR 2011.

[14]  Anand Rangarajan,et al.  Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[16]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[17]  Naokazu Yokoya,et al.  A Robust Method for Registration and Segmentation of Multiple Range Images , 1995, Comput. Vis. Image Underst..

[18]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[19]  Radu Horaud,et al.  Rigid and Articulated Point Registration with Expectation Conditional Maximization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[22]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[24]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[25]  Xavier Binefa,et al.  Bayesian perspective for the registration of multiple 3D views , 2014, Comput. Vis. Image Underst..

[26]  Martial Hebert,et al.  Fully automatic registration of multiple 3D data sets , 2003, Image Vis. Comput..

[27]  Daniel Pizarro-Perez,et al.  Stratified Generalized Procrustes Analysis , 2012, International Journal of Computer Vision.

[28]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  William M. Wells,et al.  Statistical Approaches to Feature-Based Object Recognition , 2004, International Journal of Computer Vision.

[30]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[31]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.

[32]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[33]  Paul Suetens,et al.  Robust point set registration using EM-ICP with information-theoretically optimal outlier handling , 2011, CVPR 2011.