Finite domain anomalous spreading consistent with first and second laws

Abstract After reviewing the problematic behavior of some previously suggested finite-interval spatial operators of the symmetric Riesz type, we create a wish list leading toward a new spatial operator suitable to use in the space–time fractional differential equation of anomalous diffusion when the transport of material is strictly restricted to a bounded domain. Based on recent studies of wall effects, we introduce a new definition of the spatial operator and illustrate its favorable characteristics. We provide two numerical methods to solve the modified space–time fractional differential equation and show particular results illustrating compliance to our established list of requirements, most important to the conservation principle and the second law of thermodynamics.

[1]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[2]  Francesco Mainardi,et al.  The fractional Fick's law for non-local transport processes , 2001 .

[3]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[4]  Marie-Christine Néel,et al.  Fractional Fick's law: the direct way , 2007 .

[5]  Diego del-Castillo-Negrete,et al.  Fractional diffusion models of nonlocal transport , 2006 .

[6]  Brian Berkowitz,et al.  On Characterization of Anomalous Dispersion in Porous and Fractured Media , 1995 .

[7]  R. Rosner,et al.  A multi-scale character of the large-scale coherent dynamics in the Rayleigh-Taylor instability , 2005 .

[8]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[9]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[10]  E. Barkai CTRW pathways to the fractional diffusion equation , 2001, cond-mat/0108024.

[11]  I M Sokolov,et al.  Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .

[13]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[14]  Iván Calvo,et al.  Continuous time random walks in finite domains and general boundary conditions: some formal considerations , 2008 .

[15]  Aleksei V. Chechkin,et al.  First passage and arrival time densities for Lévy flights and the failure of the method of images , 2003 .

[16]  V. Gonchar,et al.  Fluctuation-driven directed transport in the presence of Lévy flights , 2007, 0710.0883.

[17]  Peter P. Valko,et al.  Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion , 2004 .

[18]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[19]  J. Klafter,et al.  Fundamentals of Lévy Flight Processes , 2006 .

[20]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[21]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[22]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[23]  L. Bécu,et al.  Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[25]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[26]  I. Podlubny Fractional differential equations , 1998 .

[27]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[28]  R. Folk,et al.  Poisson‐Voronoi核形成と成長変形における分域構造の時間発展:一次元と三次元の結果 , 2008 .

[29]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[30]  Liliana Di Pietro,et al.  Fractional diffusion and reflective boundary condition , 2006 .

[31]  B. A. Carreras,et al.  Continuous time random walks in periodic systems: fluid limit and fractional differential equations on the circle , 2007, 0708.3213.

[32]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[33]  David A. Benson,et al.  Space‐fractional advection‐dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data , 2007 .

[34]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[35]  M Kardar,et al.  Fractional Laplacian in bounded domains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  John W. Crawford,et al.  The impact of boundary on the fractional advection dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives , 2007 .

[37]  Enrico Scalas,et al.  The application of continuous-time random walks in finance and economics , 2006 .

[38]  J. Klafter,et al.  Some fundamental aspects of Lévy flights , 2007 .

[39]  Marie-Christine Néel,et al.  Space-fractional advection-diffusion and reflective boundary condition. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[41]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[42]  Elliott W. Montroll,et al.  Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries , 1973 .

[43]  On diffusion in fractal porous media , 1991 .