FeCa-phosphate, Fe-silicate, and Mn-oxide minerals in concretions from the Monterey Formation

[1]  D. Z. Piper,et al.  Geochemistry of minor elements in the Monterey Formation, California; seawater chemistry of deposition , 1995 .

[2]  Robert Raiswell,et al.  A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals , 1993 .

[3]  M. Coleman Microbial processes: Controls on the shape and composition of carbonate concretions , 1993 .

[4]  D. Z. Piper,et al.  Cooccurrence of Fe-, Fe-Ca-, and Ca-phosphate minerals in concretions within the Monterey Formation; a record of uplift of the Santa Maria Basin, California , 1993 .

[5]  D. Z. Piper,et al.  Rare earth elements in the phosphatic-enriched sediment of the Peru shelf , 1988 .

[6]  J. Stucki Structural Iron in Smectites , 1988 .

[7]  D. C. Bain,et al.  Spheniscidite, a new phosphate mineral from Elephant Island, British Antarctic Territory , 1986, Mineralogical Magazine.

[8]  H. Stockman,et al.  A review of the todorokite-buserite problem; implications to the mineralogy of marine manganese nodules , 1983 .

[9]  F. N. Blanchard Evaluation of Existing X-Ray Powder Diffraction Standards for Phosphate Minerals , 1983 .

[10]  J. Drever,et al.  The geochemistry of natural waters , 1988 .

[11]  K. Pisciotto Review of Secondary Carbonates in the Monterey Formation, California , 1981 .

[12]  C. Isaacs Diagenesis in the Monterey formation examined laterally along the coast near Santa Barbara, California , 1980 .

[13]  R. Eggleton Nontronite: chemistry and x-ray diffraction , 1977, Clay Minerals.

[14]  P. Moore,et al.  Mitridatite, Ca6(H2O)6[Fe93+O6(PO4)9].3H2O. A noteworthy octahedral sheet structure , 1977 .

[15]  D. C. Bain,et al.  Occurrence of leucophosphite in a soil from Elephant Island, British Antarctic Territory , 1976 .

[16]  J. Nriagu,et al.  Diagenetic formation of iron phosphates in recent lake sediments , 1974 .

[17]  P. Moore,et al.  I. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species II. Redefinition of Overite, an Isotype of Segelerite III. Isotypy of Robertsite, Mitridatite, and Arseniosiderite , 1974 .

[18]  Paul Brain Morre Octahedral tetramer in the crystal structure of leucophosphite, K2[Fe3+4(OH)2(H2O)2(PO4)4].2H2O. , 1972 .

[19]  Jerome O. Nriagu,et al.  Stability of vivianite and ion-pair formation in the system fe3(PO4)2-H3PO4H3PO4-H2o , 1972 .

[20]  Robert A. Gulbrandsen Relation of Carbon Dioxide Content of Apatite of the Phosphoria formation to Regional Facies , 1971 .

[21]  A. Albee,et al.  Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates , 1970 .

[22]  P. Moore Crystal chemistry of the basic iron phosphates , 1970 .

[23]  G. Mcclellan,et al.  Crystal chemical investigation of natural apatites , 1969 .

[24]  A. Albee,et al.  Empirical Correction Factors for the Electron Microanalysis of Silicates and Oxides , 1968, The Journal of Geology.

[25]  R. Berner Rate of concretion growth , 1968 .

[26]  R. Berner Calcium Carbonate Concretions Formed by the Decomposition of Organic Matter , 1968, Science.

[27]  M. Fisher,et al.  The Sea, Volume 2: The Composition of Sea-Water Comparative and Descriptive Oceanography , 1963 .

[28]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[29]  G. M. Faulring A Study of Cuban Todorokite , 1961 .

[30]  U. Marvin,et al.  New occurrences of todorokite , 1960 .

[31]  Evans,et al.  STANDARD X-RAY DIFFRACTION POWDER PATTERNS , 1962 .

[32]  J. P. Smith,et al.  Mineralogical Character of Some Iron and Aluminum Phosphates Containing Potassium and Ammonium 1 , 1951 .

[33]  M. Bramlette The Monterey formation of California and the origin of its siliceous rocks , 1946 .

[34]  T. Barth Crystallographic studies in the vivianite group , 1937 .