IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA

We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological parameter estimator which fits multi-frequency models to the SPT 150 and 220 GHz bandpowers. We find an excellent fit to the measured bandpowers with a model that includes lensed primary CMB anisotropy, secondary thermal (tSZ) and kinetic (kSZ) Sunyaev-Zel'dovich anisotropies, unclustered synchrotron point sources, and clustered dusty point sources. In addition to measuring the power spectrum of dusty galaxies at high signal-to-noise, the data primarily constrain a linear combination of the kSZ and tSZ anisotropy contributions at 150 GHz and l = 3000: D^(tSZ) ^(3000) + 0.5 D_(kSZ)^(3000) = 4.5 ± 1.0 μK^2. The 95% confidence upper limits on secondary anisotropy power are D ^(tSZ)_(3000) < 5.3 μK^2 and D^(kSZ)_(3000) < 6.5 μK^2. We also consider the potential correlation of dusty and tSZ sources and find it incapable of relaxing the tSZ upper limit. These results increase the significance of the lower than expected tSZ amplitude previously determined from SPT power spectrum measurements. We find that models including non-thermal pressure support in groups and clusters predict tSZ power in better agreement with the SPT data. Combining the tSZ power measurement with primary CMB data halves the statistical uncertainty on σ8. However, the preferred value of σ8 varies significantly between tSZ models. Improved constraints on cosmological parameters from tSZ power spectrum measurements require continued progress in the modeling of the tSZ power.

[1]  The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground , 2008 .

[2]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[3]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[4]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[5]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[6]  M. Donahue,et al.  THE PRESSURE PROFILES OF HOT GAS IN LOCAL GALAXY GROUPS , 2010, 1012.0312.

[7]  F. Pearce,et al.  Cosmological simulations of the intracluster medium , 2004, astro-ph/0407058.

[8]  A. Evrard Formation and Evolution of X-Ray Clusters: A Hydrodynamic Simulation of the Intracluster Medium , 1990 .

[9]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[10]  Adrian T. Lee,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA , 2012, 1202.0546.

[11]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[12]  Unbiased estimation of an angular power spectrum , 2004, astro-ph/0402428.

[13]  O. Zahn,et al.  SHARPENING THE PRECISION OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2009, 0903.5322.

[14]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[15]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.

[16]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[17]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[18]  Daisuke Nagai,et al.  RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.

[19]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[20]  The Influence of Nonuniform Reionization on the CMB , 2005, astro-ph/0503166.

[21]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[22]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[23]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[24]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[25]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[26]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[27]  H. Trac,et al.  Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models , 2010, 1003.3455.

[28]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY , 2010, 1007.5256.

[29]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY , 2010, 1009.0847.

[30]  A dynamical model for the distribution of dark matter and gas in galaxy clusters , 2003, astro-ph/0309405.

[31]  M. Lueker,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL’DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1203.5775.

[32]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[33]  Roberto Ricci,et al.  Predictions for high-frequency radio surveys of extragalactic sources , 2005 .

[34]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[35]  Uros Seljak,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002 .

[36]  J. Ostriker,et al.  EXPLORING THE ENERGETICS OF INTRACLUSTER GAS WITH A SIMPLE AND ACCURATE MODEL , 2009, 0905.3748.

[37]  Z. Luki'c,et al.  GALAXY CLUSTERS AS A PROBE OF EARLY DARK ENERGY , 2010, 1004.0437.

[38]  L. Knox Cosmic Microwave Background Anisotropy Window Functions Revisited , 1999 .

[39]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[40]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[41]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[42]  S. Dodelson,et al.  Impact of Inhomogeneous Reionization on Cosmic Microwave Background Anisotropy , 1998, astro-ph/9805012.

[43]  T. Phillips,et al.  Millimeter and Submillimeter Detectors for Astronomy , 2003 .

[44]  A. Hu,et al.  Secondary Cosmic Microwave Background Anisotropies in a Universe Reionized in Patches , 1998, astro-ph/9803188.

[45]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[46]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[47]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[48]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[49]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[50]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[51]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[52]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[53]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[54]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[55]  Adrian T. Lee,et al.  South Pole Telescope optics. , 2008, Applied optics.