A Multi-Scale Singularity Bounding Volume Hierarchy

A scale space approach is taken for building Bounding Volume Hierarchies (BVHs) for collision detection. A spherical bounding volume is generated at each node of the BVH using estimates of the mass distribution. Traditional top-down methods approximates the surface of an object in a coarse to fine manner, by recursively increasing resolution by some factor, e.g. 2. The method presented in this article analyzes the mass distribution of a solid object using a well founded scale-space based on the Diffusion Equation: the Gaussian Scale-Space. In the Gaussian scale-space, the deep structure of extremal mass points is naturally binary, and the linking process is therefore simple. The main contribution of this article is a novel approach for constructing BVHs using Multi-Scale Singularity Trees (MSSTs) for collision detection. The BVH-building algorithm extends the field with a new method based on volumetric shape rather than statistics of the surface geometry or geometrical constructs such as medial surfaces.

[1]  Dinesh Manocha,et al.  Collision queries using oriented bounding boxes , 2000 .

[2]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[3]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[4]  Dinesh Manocha,et al.  Spherical shell: a higher order bounding volume for fast proximity queries , 1998 .

[5]  Philip M. Hubbard,et al.  Approximating polyhedra with spheres for time-critical collision detection , 1996, TOGS.

[6]  Sven Kreiborg,et al.  Multi-scale Singularity Trees: Soft-Linked Scale-Space Hierarchies , 2005, Scale-Space.

[7]  James Damon,et al.  Local Morse Theory for Gaussian Blurred Functions , 1997, Gaussian Scale-Space Theory.

[8]  Gino van den Bergen,et al.  Proximity Queries and Penetration Depth Computation on 3d Game Objects , 2022 .

[9]  Richard L. Grimsdale,et al.  Collision Detection for Animation using Sphere‐Trees , 1995, Comput. Graph. Forum.

[10]  Susan Fisher,et al.  An improved finite-element contact model for anatomical simulations , 2003, The Visual Computer.

[11]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[12]  Gino van den Bergen Efficient Collision Detection of Complex Deformable Models using AABB Trees , 1997, J. Graphics, GPU, & Game Tools.

[13]  Ming C. Lin,et al.  Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition , 2001, Comput. Graph. Forum.

[14]  Tomas Akenine-Möller,et al.  Collision Detection for Continuously Deforming Bodies , 2001, Eurographics.

[15]  Kenny Erleben,et al.  Collision detection of deformable volumetric meshes , 2003 .

[16]  Gabriel Zachmann,et al.  Rapid collision detection by dynamically aligned DOP-trees , 1998, Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180).

[17]  Arjan Kuijper,et al.  The deep structure of Gaussian scale space images , 2002 .

[18]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[19]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[20]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[21]  Dinesh Manocha,et al.  Incremental Algorithms for Collision Detection Between Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[22]  R. Deriche Recursively Implementing the Gaussian and its Derivatives , 1993 .

[23]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[24]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[25]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[26]  C. Laugier Fast Contact Localisation of Moving Deformable Polyhedras Fast Contact Localisation of Moving Deformable Polyhedras , 2000 .

[27]  P. Volino,et al.  Collision and Self-Collision Detection :Efficient and Robust Solutions for Highly Deformable Surfaces , 1995 .

[28]  Taosong He,et al.  Fast collision detection using QuOSPO trees , 1999, SI3D.

[29]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[30]  Costas S. Tzafestas,et al.  Real-time collision detection using spherical octrees: virtual reality application , 1996, Proceedings 5th IEEE International Workshop on Robot and Human Communication. RO-MAN'96 TSUKUBA.

[31]  John Dingliana,et al.  Graceful Degradation of Collision Handling in Physically Based Animation , 2000, Comput. Graph. Forum.

[32]  John Salmon,et al.  Automatic Creation of Object Hierarchies for Ray Tracing , 1987, IEEE Computer Graphics and Applications.

[33]  Philip M. Hubbard,et al.  Interactive collision detection , 1993, Proceedings of 1993 IEEE Research Properties in Virtual Reality Symposium.

[34]  LA Vrence Segmentation Based on Intensity Extrema , 2004 .

[35]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[36]  Carol O'Sullivan,et al.  Adaptive medial-axis approximation for sphere-tree construction , 2004, TOGS.

[37]  Dinesh Manocha,et al.  Fast Proximity Queries with Swept Sphere Volumes , 1999 .

[38]  Fabio Ganovelli,et al.  BucketTree: Improving Collision Detection Between Deformable Objects , 2000 .

[39]  John Dingliana,et al.  Real-time Collision Detection and Response using Sphere-trees , 1999 .

[40]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[41]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[42]  Nadia Magnenat-Thalmann,et al.  Virtual clothing - theory and practice , 2000 .

[43]  Laurent D. Cohen,et al.  The Extrema Edges , 2003, Scale-Space.