Low-floor decoders for LDPC codes

One of the most significant impediments to the use of LDPC codes in many communication and storage systems is the error-rate floor phenomenon associated with their iterative decoders. The error floor has been attributed to certain subgraphs of an LDPC code's Tanner graph induced by so-called trapping sets. We show in this paper that once we identify the trapping sets of an LDPC code of interest, a sum-product algorithm (SPA) decoder can be custom-designed to yield floors that are orders of magnitude lower than floors of the the conventional SPA decoder. We present three classes of such decoders: (1) a bi-mode decoder, (2) a bit-pinning decoder which utilizes one or more outer algebraic codes, and (3) three generalized-LDPC decoders. We demonstrate the effectiveness of these decoders for two codes, the rate-1/2 (2640,1320) Margulis code which is notorious for its floors and a rate-0.3 (640,192) quasi-cyclic code which has been devised for this study. Although the paper focuses on these two codes, the decoder design techniques presented are fully generalizable to any LDPC code.

[1]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[2]  P. Vontobel,et al.  Graph-covers and iterative decoding of nite length codes , 2003 .

[3]  D. Divsalar,et al.  Protograph based low error floor LDPC coded modulation , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[4]  Yifei Zhang,et al.  Structured IRA Codes: Performance Analysis and Construction , 2007, IEEE Transactions on Communications.

[5]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[6]  C. Jones,et al.  Functions and Architectures for LDPC Decoding , 2007, 2007 IEEE Information Theory Workshop.

[7]  Stephen G. Wilson,et al.  A General Method for Finding Low Error Rates of LDPC Codes , 2006, ArXiv.

[8]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[9]  William E. Ryan,et al.  On importance sampling for linear block codes , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[10]  Babak Daneshrad,et al.  A performance improvement and error floor avoidance technique for belief propagation decoding of LDPC codes , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[11]  Joachim Hagenauer,et al.  A Viterbi algorithm with soft-decision outputs and its applications , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[12]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[13]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[14]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[15]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[16]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[17]  A. Ramamoorthy,et al.  Lowering the error floors of irregular high-rate LDPC codes by graph conditioning , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[18]  Yifei Zhang,et al.  Toward low LDPC-code floors: a case study , 2009, IEEE Transactions on Communications.

[19]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[20]  J.M.F. Moura,et al.  Structured LDPC codes for high-density recording: large girth and low error floor , 2006, IEEE Transactions on Magnetics.

[21]  Yang Han,et al.  Pinning techniques for low-floor detection/decoding of LDPC-Coded partial response channels , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.

[22]  V. Anantharam,et al.  Evaluation of the Low Frame Error Rate Performance of LDPC Codes Using Importance Sampling , 2007, 2007 IEEE Information Theory Workshop.

[23]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[24]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[25]  R. M. Tanner On Quasi-Cyclic Repeat-Accumulate Codes , 2000 .

[26]  Lara Dolecek,et al.  GEN03-6: Investigation of Error Floors of Structured Low-Density Parity-Check Codes by Hardware Emulation , 2006, IEEE Globecom 2006.

[27]  Hua Xiao,et al.  Graph-based message-passing schedules for decoding LDPC codes , 2004, IEEE Transactions on Communications.

[28]  Shu Lin,et al.  Construction of low-density parity-check codes by superposition , 2005, IEEE Transactions on Communications.

[29]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[30]  Richard D. Wesel,et al.  Informed Dynamic Scheduling for Belief-Propagation Decoding of LDPC Codes , 2007, 2007 IEEE International Conference on Communications.

[31]  P. Vontobel,et al.  Constructions of LDPC Codes using Ramanujan Graphs and Ideas from Margulis , 2000 .

[32]  S. Dolinar,et al.  Accumulate-repeat-accumulate-accumulate-codes , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[33]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[34]  Emina Soljanin,et al.  Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[35]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[36]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[37]  Richard D. Wesel,et al.  Construction of irregular LDPC codes with low error floors , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[38]  Shashi Kiran Chilappagari,et al.  Error Floors of LDPC Codes on the Binary Symmetric Channel , 2006, 2006 IEEE International Conference on Communications.

[39]  Shu Lin,et al.  Construction of Regular and Irregular LDPC Codes: Geometry Decomposition and Masking , 2007, IEEE Transactions on Information Theory.

[40]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[41]  Michael Chertkov,et al.  Reducing the Error Floor , 2007, 2007 IEEE Information Theory Workshop.