Unified view on filter banks

An impressive variety of multirate filter banks evolved during the past twenty years. We presents an algebraic approach that subsumes many concepts developed so far (e.g. multifilters, nonseparable multidimensional filter banks, cyclic filter banks, filter banks with values in finite fields, etc.). In our approach the signals and filters are viewed as elements of a group ring. We give necessary and sufficient conditions for perfect reconstruction and derive complete parameterization in terms of ladder (or lifting) structures.

[1]  Fons A. M. L. Bruekers,et al.  New Networks for Perfect Inversion and Perfect Reconstruction , 1992, IEEE J. Sel. Areas Commun..

[2]  P. P. Vaidyanathan,et al.  Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks , 1988, IEEE Trans. Acoust. Speech Signal Process..

[3]  P. M. Cohn,et al.  On the structure of the GL2 of a ring , 1966 .

[4]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[5]  Gregory Karpilovsky,et al.  Commutative group algebras , 1983 .

[6]  C. Curtis,et al.  Methods of representation theory--with applications to finite groups and orders , 1981 .

[7]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[8]  F. U. May Lossless Image Compression using Wavelets over Finite Rings and Related Architectures , .

[9]  Andrei Suslin,et al.  ON THE STRUCTURE OF THE SPECIAL LINEAR GROUP OVER POLYNOMIAL RINGS , 1977 .

[10]  Ajit S. Bopardikar,et al.  PRCC filter banks: theory, implementation, and application , 1997, Optics & Photonics.

[11]  Hyman Bass,et al.  K-Theory and stable algebra , 1964 .

[12]  P. M. Cohn,et al.  Some remarks on the invariant basis property , 1966 .

[13]  Andreas Klappenecker,et al.  Filterbankstrukturen zur verlustfreien Kompression medizinischer Bilddaten , 1998, Bildverarbeitung für die Medizin.

[14]  Martin Vetterli,et al.  Perfect reconstruction FIR filter banks: some properties and factorizations , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  P. P. Vaidyanathan,et al.  Theory of cyclic filter banks , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.