Topological fisheye views for visualizing large graphs

Graph drawing is a basic visualization tool that works well for graphs having up to hundreds of nodes and edges. At greater scale, data density and occlusion problems often negate its effectiveness. Conventional pan-and-zoom, multiscale, and geometric fisheye views are not fully satisfactory solutions to this problem. As an alternative, we propose a topological zooming method. It precomputes a hierarchy of coarsened graphs that are combined on-the-fly into renderings, with the level of detail dependent on distance from one or more foci. A related geometric distortion method yields constant information density displays from these renderings.

[1]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[2]  David Harel,et al.  Graph Drawing by High-Dimensional Embedding , 2002, J. Graph Algorithms Appl..

[3]  Kalle Lyytinen,et al.  Improving graphical information system model use with elision and connecting lines , 2003, INTR.

[4]  Chris Walshaw,et al.  Journal of Graph Algorithms and Applications a Multilevel Algorithm for Force-directed Graph-drawing , 2022 .

[5]  Andrzej Lingas,et al.  A Linear-time Construction of the Relative Neighborhood Graph From the Delaunay Triangulation , 1994, Comput. Geom..

[6]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[7]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[8]  Ramana Rao,et al.  The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies , 1996, J. Vis. Lang. Comput..

[9]  David Harel,et al.  Drawing Huge Graphs by Algebraic Multigrid Optimization , 2003, Multiscale Model. Simul..

[10]  Yehuda Koren,et al.  Topological Fisheye Views for Visualizing Large Graphs , 2005, IEEE Trans. Vis. Comput. Graph..

[11]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[12]  Emanuel G. Noik,et al.  Exploring large hyperdocuments: fisheye views of nested networks , 1993, Hypertext.

[13]  Michael Jünger,et al.  Graph Drawing Software , 2003, Graph Drawing Software.

[14]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[15]  Richard F. Barrett,et al.  Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.

[16]  L. Trajkovic,et al.  Mapping the Internet , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[17]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[18]  M. Sheelagh T. Carpendale,et al.  Making distortions comprehensible , 1997, Proceedings. 1997 IEEE Symposium on Visual Languages (Cat. No.97TB100180).

[19]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[20]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[21]  Tamara Munzner,et al.  H3: laying out large directed graphs in 3D hyperbolic space , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[22]  Guy Melançon,et al.  Multiscale visualization of small world networks , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[23]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[24]  Colin Ware,et al.  Visualization of Large Nested Graphs in 3D: Navigation and Interaction , 1998, J. Vis. Lang. Comput..

[25]  George W. Furnas,et al.  Semnet: three-dimensional graphic representa-tions of large knowledge bases , 1990 .