Tracking Control of Mobile Robots Localized via Chained Fusion of Discrete and Continuous Epipolar Geometry, IMU and Odometry

This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.

[1]  Dusan M. Stipanovic,et al.  Remote Formation Control and Collision Avoidance for Multi-Agent Nonholonomic Systems , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[3]  P. Perona,et al.  Motion estimation via dynamic vision , 1996, IEEE Trans. Autom. Control..

[4]  Jean-Jacques Risler,et al.  Nonholonomic Systems: Controllability and Complexity , 1996, Theor. Comput. Sci..

[5]  Boumediene Belkhouche,et al.  Line of sight robot navigation toward a moving goal , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Bruno Jouvencel,et al.  Coordinated path following control of multiple nonholonomic vehicles , 2009, OCEANS 2009-EUROPE.

[7]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Guan-Yu Chen,et al.  An incremental-learning-by-navigation approach to vision-based autonomous land vehicle guidance in indoor environments using vertical line information and multiweighted generalized Hough transform technique , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Roger Tsai,et al.  Synopsis of recent progress on camera calibration for 3D machine vision , 1989 .

[10]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Guoqiang Hu,et al.  Adaptive Visual Servo Control , 2009, Encyclopedia of Complexity and Systems Science.

[12]  Nicholas Gans,et al.  Localization through fusion of discrete and continuous epipolar geometry with wheel and IMU odometry , 2011, Proceedings of the 2011 American Control Conference.

[13]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  Simon Lacroix,et al.  Vision-Based SLAM: Stereo and Monocular Approaches , 2007, International Journal of Computer Vision.

[15]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[16]  Nicholas R. Gans,et al.  Chained fusion of discrete and continuous epipolar geometry with odometry for long-term localization of mobile robots , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[17]  Andrew Zisserman,et al.  Automatic reconstruction of piecewise planar models from multiple views , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[18]  M K Kaiser,et al.  Vision-Based Estimation for Guidance, Navigation, and Control of an Aerial Vehicle , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[19]  Emanuele Frontoni,et al.  A vision based algorithm for active robot localization , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[20]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[21]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Warren E. Dixon,et al.  Homography-based visual servo regulation of mobile robots , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[24]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[26]  Camillo J. Taylor,et al.  Robust vision-based pose control , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[27]  Robert B. Fisher,et al.  Range Sensors , 2008, Springer Handbook of Robotics.

[28]  Nicholas R. Gans,et al.  Fusion of discrete and continuous epipolar geometry for visual odometry and localization , 2010, 2010 IEEE International Workshop on Robotic and Sensors Environments.

[29]  Jens-Steffen Gutmann,et al.  Markov-Kalman localization for mobile robots , 2002, Object recognition supported by user interaction for service robots.

[30]  Michael R. M. Jenkin,et al.  Inertial Sensors, GPS, and Odometry , 2008, Springer Handbook of Robotics.

[31]  Antonio M. Pascoal,et al.  Adaptive, non-singular path-following control of dynamic wheeled robots , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[32]  Nicholas R. Gans,et al.  Homography-Based Control Scheme for Mobile Robots With Nonholonomic and Field-of-View Constraints , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[34]  W. Campbell,et al.  THE UNIVERSITY OF TEXAS AT DALLAS , 2004 .

[35]  Ian D. Reid,et al.  Planes, trains and automobiles — autonomy for the modern robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[36]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[37]  Andreas Geiger,et al.  Visual SLAM for autonomous ground vehicles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[38]  Roland Siegwart,et al.  Multisensor on-the-fly localization using laser and vision , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[39]  Guoqiang Hu,et al.  Image Based State Estimation , 2009, Encyclopedia of Complexity and Systems Science.

[40]  Warren E. Dixon,et al.  Identification of a moving object's velocity with a fixed camera , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[41]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[42]  Masayuki Inaba,et al.  Plane segment finder: algorithm, implementation and applications , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[43]  Warren E. Dixon,et al.  Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[44]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[45]  Michel Dhome,et al.  Speed command of a robotic system by monocular pose estimate , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[46]  Se-Young Oh,et al.  Range sensor-based robot localization using neural network , 2007, 2007 International Conference on Control, Automation and Systems.

[47]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[48]  O. Faugeras,et al.  A 3D World Model Builder with a Mobile Robot , 1992 .

[49]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[50]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[51]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[52]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[53]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[55]  Salah Sukkarieh,et al.  Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions , 2012, IEEE Transactions on Robotics.

[56]  Bob Fisher,et al.  Springer Handbook of Robotics , 2008 .

[57]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.