Efficient Mesh Optimization Using the Gradient Flow of the Mean Volume

The signed volume function for polyhedra can be generalized to a mean volume function for volume elements by averaging over the triangulations of the underlying polyhedron. If we consider these up to translation and scaling, the resulting quotient space is diffeomorphic to a sphere. The mean volume function restricted to this sphere is a quality measure for volume elements. We show that the gradient ascent of this map regularizes the building blocks of hybrid meshes consisting of tetrahedra, hexahedra, prisms, pyramids, and octahedra, that is, the optimization process converges to regular polyhedra. We show that the (normalized) gradient flow of the mean volume yields a fast and efficient optimization scheme for the finite element method known as the geometric element transformation method. Furthermore, we shed some light on the dynamics of this method and the resulting smoothing procedure both theoretically and experimentally.

[1]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[2]  Lori A. Freitag,et al.  On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .

[3]  Cecil Armstrong,et al.  Smoothing by optimisation for a quadrilateral mesh with invalid elements , 2000 .

[4]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[5]  Guoliang Xu,et al.  A Novel Geometric Flow-Driven Approach for Quality Improvement of Segmented Tetrahedral Meshes , 2011, IMR.

[6]  Manolis Papadrakakis,et al.  Improved GETMe by adaptive mesh smoothing , 2013 .

[7]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[8]  Thomas James Wilson Simultaneous Untangling and Smoothing of Hexahedral Meshes , 2011 .

[9]  Suzanne M. Shontz,et al.  Performance characterization of nonlinear optimization methods for mesh quality improvement , 2011, Engineering with Computers.

[10]  D. E. Davies,et al.  Calculation of the volume of a general hexahedron for flow predictions , 1985 .

[11]  Bruce Kleiner,et al.  Notes on Perelman's papers , 2006 .

[12]  M. Morse The Calculus of Variations in the Large , 1934 .

[13]  Nicole M. Grosland,et al.  An Analytical Framework for Quadrilateral Surface Mesh Improvement with an Underlying Triangulated Surface Definition , 2010, IMR.

[14]  R. Connelly An attack on rigidity. I, II , 1975 .

[15]  Matthew L. Staten,et al.  An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes , 1998, IMR.

[16]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[17]  V. Rubakov Classical Theory of Gauge Fields , 2002 .

[18]  Dimitris Vartziotis,et al.  A dual element based geometric element transformation method for all-hexahedral mesh smoothing , 2011 .

[19]  R. Bott Lectures on Morse theory, old and new , 1982 .

[20]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[21]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[22]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[23]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[24]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[25]  Manolis Papadrakakis,et al.  Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation , 2013 .

[26]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[27]  Zhijian Chen,et al.  Combined Laplacian and Optimization-based Smoothing for Quadratic Mixed Surface Meshes , 2003, IMR.

[28]  Dimitris Vartziotis,et al.  Fast smoothing of mixed volume meshes based on the effective geometric element transformation method , 2012 .

[29]  Dimitris Vartziotis,et al.  The geometric element transformation method for tetrahedral mesh smoothing , 2009 .

[30]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[31]  Dimitris Vartziotis,et al.  The geometric element transformation method for mixed mesh smoothing , 2009, Engineering with Computers.

[32]  Kenji Shimada,et al.  Anisotropic Triangulation of Parametric Surfaces via Close Packing of Ellipsoids , 2000, Int. J. Comput. Geom. Appl..

[33]  P. Mani Automorphismen von polyedrischen Graphen , 1971 .

[34]  John C. Tipper,et al.  The Modified Direct Method: An Iterative Approach for Smoothing Planar Meshes , 2013, ICCS.

[35]  Patrick M. Knupp,et al.  Hexahedral and Tetrahedral Mesh Untangling , 2001, Engineering with Computers.

[36]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[37]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[38]  Euclid Euclid's Elements , 2002 .

[39]  C. Shonkwiler,et al.  Probability Theory of Random Polygons from the Quaternionic Viewpoint , 2012, 1206.3161.

[40]  G. Ziegler Lectures on Polytopes , 1994 .

[41]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[43]  Patrick M. Knupp,et al.  The Mesquite Mesh Quality Improvement Toolkit , 2003, IMR.

[44]  J. M. González-Yuste,et al.  Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .

[45]  Graham F. Carey,et al.  A variational grid optimization method based on a local cell quality metric , 2005 .

[46]  Dimitris Vartziotis,et al.  Efficient and Global Optimization-Based Smoothing Methods for Mixed-Volume Meshes , 2013, IMR.

[47]  Idzhad Kh. Sabitov,et al.  The Volume as a Metric Invariant of Polyhedra , 1998, Discret. Comput. Geom..

[48]  R. Connelly,et al.  The Bellows conjecture. , 1997 .