Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem

For $\mathcal{O}$ a bounded domain in $\mathbb{R}^d$ and a given smooth function $g:\mathcal{O}\to\mathbb{R}$, we consider the statistical nonlinear inverse problem of recovering the conductivity $f>0$ in the divergence form equation $$ \nabla\cdot(f\nabla u)=g\ \textrm{on}\ \mathcal{O}, \quad u=0\ \textrm{on}\ \partial\mathcal{O}, $$ from $N$ discrete noisy point evaluations of the solution $u=u_f$ on $\mathcal O$. We study the statistical performance of Bayesian nonparametric procedures based on a flexible class of Gaussian (or hierarchical Gaussian) process priors, whose implementation is feasible by MCMC methods. We show that, as the number $N$ of measurements increases, the resulting posterior distributions concentrate around the true parameter generating the data, and derive a convergence rate $N^{-\lambda}, \lambda>0,$ for the reconstruction error of the associated posterior means, in $L^2(\mathcal{O})$-distance.

[1]  Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales , 2000 .

[2]  A. Stuart,et al.  Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.

[3]  Werner Linde,et al.  Approximation, metric entropy and small ball estimates for Gaussian measures , 1999 .

[4]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[5]  Patrick R. Conrad,et al.  Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.

[6]  S. George,et al.  Iterative Methods for Nonlinear Ill-Posed Problems , 2012 .

[7]  Michael A. Osborne,et al.  Probabilistic Integration: A Role in Statistical Computation? , 2015, Statistical Science.

[8]  G. Alessandrini An identification problem for an elliptic equation in two variables , 1986 .

[9]  R. Nickl,et al.  Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .

[10]  K. Kunisch,et al.  On the Injectivity and Linearization of the Coefficient-to-Solution Mapping for Elliptic Boundary Value Problems , 1994 .

[11]  Nicolai Bissantz,et al.  Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications , 2007, SIAM J. Numer. Anal..

[12]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[13]  A. V. D. Vaart,et al.  BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.

[14]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[15]  G. Richter An Inverse Problem for the Steady State Diffusion Equation , 1981 .

[16]  R. Nickl,et al.  Bernstein–von Mises theorems for statistical inverse problems II: compound Poisson processes , 2017, Electronic Journal of Statistics.

[17]  A. W. Vaart,et al.  Bayes procedures for adaptive inference in inverse problems for the white noise model , 2012, Probability Theory and Related Fields.

[18]  Sara van de Geer,et al.  Convergence Rates for Penalized Least Squares Estimators in PDE Constrained Regression Problems , 2018, SIAM/ASA J. Uncertain. Quantification.

[19]  T. Hohage,et al.  Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise , 2008 .

[20]  Simon R. Arridge,et al.  Solving inverse problems using data-driven models , 2019, Acta Numerica.

[21]  Kweku Abraham,et al.  On statistical Calderón problems , 2020 .

[22]  B. Kaltenbacher,et al.  Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems , 2009 .

[23]  T. Hohage,et al.  Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise , 2004 .

[24]  L. Birge Model selection for Gaussian regression with random design , 2004 .

[25]  Robert V. Kohn,et al.  A variational method for parameter identification , 1988 .

[26]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[27]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[28]  Klaus Ritter,et al.  Bayesian numerical analysis , 2000 .

[29]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[30]  Martin Burger,et al.  Modern regularization methods for inverse problems , 2018, Acta Numerica.

[31]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[32]  NUMERIGAL ANAIYS,et al.  A variational method for parameter identification , 2009 .

[33]  Richard Nickl,et al.  Bernstein–von Mises theorems for statistical inverse problems I: Schrödinger equation , 2017, Journal of the European Mathematical Society.

[34]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[35]  C. Kravaris,et al.  Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.

[36]  Richard S. Falk,et al.  Error estimates for the numerical identification of a variable coefficient , 1983 .

[37]  ST ] 8 J un 2 01 9 On statistical Calderón problems , 2019 .

[38]  S. Vollmer,et al.  Posterior consistency for Bayesian inverse problems through stability and regression results , 2013, 1302.4101.

[39]  Jürgen Sprekels,et al.  On the identification of coefficients of elliptic problems by asymptotic regularization , 1985 .

[40]  Richard Nickl,et al.  Efficient nonparametric Bayesian inference for $X$-ray transforms , 2017, The Annals of Statistics.

[41]  Kolyan Ray,et al.  Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.

[42]  Stig Larsson,et al.  Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.

[43]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[44]  R. Nickl,et al.  Consistent Inversion of Noisy Non‐Abelian X‐Ray Transforms , 2019, Communications on Pure and Applied Mathematics.

[45]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[46]  Van Der Vaart,et al.  Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.

[47]  Albert Cohen,et al.  Diffusion Coefficients Estimation for Elliptic Partial Differential Equations , 2016, SIAM J. Math. Anal..

[48]  Matti Lassas,et al.  Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators , 2015, 1507.01772.

[49]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[50]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[51]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[52]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[53]  Richard Nickl,et al.  Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions , 2015, 1510.05526.

[54]  I. Knowles Parameter identification for elliptic problems , 2001 .