Spectral decomposition of the Renyi map

The authors construct a generalized spectral decomposition of the Frobenius-Perron operator of the general beta -adic Renyi map using a general iterative operator method applicable in principle to any mixing dynamical system. They also explicitly define appropriate rigged Hilbert spaces, which provide mathematical meaning to the formally obtained spectral decomposition. The explicit construction of the eigenvalues and eigenvectors allows one to show that the essential spectral radius of the Frobenius-Perron operator decreases as the smoothness of the domain increases. The reason for the change of the spectrum from the unit disk to isolated eigenvalues, is the existence of coherent states of the Frobenius-Perron operator, which are not infinitely differentiable.

[1]  D. Ruelle One-dimensional Gibbs states and Axiom A diffeomorphisms , 1987 .

[2]  I. Antoniou,et al.  Generalized spectral decompositions of mixing dynamical systems , 1993 .

[3]  Manuel Gadella,et al.  Dirac Kets, Gamow Vectors and Gel'fand triplets : the rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin , 1989 .

[4]  Ruelle classical resonances and dynamical chaos: The three- and four-disk scatterers. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  I. Prigogine,et al.  Alternative formulation of classical and quantum dynamics for non-integrable systems , 1991 .

[6]  David Ruelle,et al.  An extension of the theory of Fredholm determinants , 1990 .

[7]  H. R. Dowson,et al.  LINEAR OPERATORS PART III: SPECTRAL OPERATORS , 1974 .

[8]  Tomio Petrosky,et al.  Quantum theory of non-integrable systems , 1991 .

[9]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[10]  P. Gaspard r-adic one-dimensional maps and the Euler summation formula , 1992 .

[11]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[12]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[13]  I. Prigogine,et al.  A unified formulation of dynamics and thermodynamics , 1973 .

[14]  On the functional equation $\frac{1}{p}\{f(\frac{x}{p})+\cdots+f(\frac{x+p-1}{p})\}=\lambda f(\mu x)$ , 1985 .

[15]  C. George Subdynamics and correlations , 1973 .

[16]  Rafael I. Nepomechie,et al.  Integrable open spin chains with nonsymmetric R-matrices , 1991 .

[17]  Christiansen,et al.  Determination of correlation spectra in chaotic systems. , 1990, Physical review letters.

[18]  H. D. Ursell,et al.  Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .

[19]  M. Pollicott Meromorphic extensions of generalised zeta functions , 1986 .

[20]  Tomio Petrosky,et al.  Subdynamics and nonintegrable systems , 1989 .

[21]  Hasegawa,et al.  Unitarity and irreversibility in chaotic systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  R. Hirschfeld Expansions in Eigenfunctionals , 1965 .

[23]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[24]  Hiroshi H. Hasegawa,et al.  Spectral representations of the Bernoulli map , 1992 .

[25]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[26]  David Ruelle,et al.  The thermodynamic formalism for expanding maps , 1989 .

[27]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[28]  Ralph P. Boas,et al.  Polynomial Expansions of Analytic Functions , 1958 .

[29]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[30]  S. Isola Resonances in chaotic dynamics , 1988 .

[31]  D. Ruelle Resonances for Axiom ${\bf A}$ flows , 1987 .

[32]  M. Pollicott The differential zeta function for Axiom A attractors , 1990 .

[33]  Krzysztof Maurin,et al.  General eigenfunction expansions and unitary representations of topological groups , 1968 .

[34]  D. Ruelle Locating resonances for AxiomA dynamical systems , 1986 .

[35]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[36]  Hiroshi H. Hasegawa,et al.  Decaying eigenstates for simple chaotic systems , 1992 .