Entrainment and detrainment in cumulus convection: an overview

Entrainment and detrainment processes have been recognised for a long time as key processes for cumulus convection and have recently witnessed a regrowth of interest mainly due to the capability of large-eddy simulations (LES) to diagnose these processes in more detail. This article has a twofold purpose. Firstly, it provides a historical overview of the past research on these mixing processes, and secondly, it highlights more recent important developments. These include both fundamental process studies using LES aiming to improve our understanding of the mixing process, but also more practical studies targeted toward an improved parametrised representation of entrainment and detrainment in large-scale models. A highlight of the fundamental studies resolves a long-lasting controversy by showing that lateral entrainment is the dominant mixing mechanism in comparison with the cloud-top entrainment in shallow cumulus convection. The more practical studies provide a wide variety of new parametrisations with sometimes conflicting approaches to the way in which the effect of the free tropospheric humidity on the lateral mixing is taken into account. An important new insight that will be highlighted is that, despite the focus in the literature on entrainment, it appears that it is rather the detrainment process that determines the vertical structure of the convection in general and the mass flux especially. Finally, in order to speed up progress and stimulate convergence in future parametrisations, stronger and more systematic use of LES is advocated. Copyright © 2012 Royal Meteorological Society

[1]  Christopher S. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results , 2004 .

[2]  A. P. Siebesma,et al.  Influence of the subcloud layer on the development of a deep convective ensemble , 2012 .

[3]  D. Randall,et al.  Evaluating Cloud Frequency of Occurrence and Cloud-Top Height Using Spaceborne Lidar Observations , 2009 .

[4]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[5]  Z. Kuang,et al.  Do Undiluted Convective Plumes Exist in the Upper Tropical Troposphere , 2010 .

[6]  G. Reuter A Historical Review of Cumulus Entrainment Studies , 1986 .

[7]  A. P. Siebesma,et al.  Model Impacts of Entrainment and Detrainment Rates in Shallow Cumulus Convection. , 1996 .

[8]  R. S. Scorer,et al.  Reviews of modern meteorology—10 convection in the atmosphere , 1953 .

[9]  J. Wyngaard,et al.  An Analysis of Closures for Pressure-Scalar Covariances in the Convective Boundary Layer , 1986 .

[10]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[11]  J. Curry,et al.  CONFRONTING MODELS WITH DATA , 2003 .

[12]  Ming Zhao,et al.  Life Cycle of Numerically Simulated Shallow Cumulus Clouds. Part I: Transport , 2005 .

[13]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[14]  J. Turner,et al.  An entraining jet model for cumulo-nimbus updraughts , 1962 .

[15]  J. Boatman A Observational Study of the Role of Cloud Top Entrainment in Cumulus Clouds. , 1983 .

[16]  Jean-Christophe Golaz,et al.  Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land , 2002 .

[17]  P. R. Jonas,et al.  Observations of cumulus cloud entrainment , 1990 .

[18]  Thijs Heus,et al.  A refined view of vertical mass transport by cumulus convection , 2008 .

[19]  Jorgen B. Jensen,et al.  Turbulent Mixing, Spectral Evolution and Dynamics in a Warm Cumulus Cloud , 1985 .

[20]  David M. Romps,et al.  Nature versus Nurture in Shallow Convection , 2010 .

[21]  A. Pier Siebesma,et al.  Analytical expressions for entrainment and detrainment in cumulus convection , 2010 .

[22]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[23]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[24]  C. Jakob,et al.  Study of diurnal cycle of convective precipitation over Amazonia using a single column model , 2002 .

[25]  David B. Parsons,et al.  Recovery Processes and Factors Limiting Cloud-Top Height following the Arrival of a Dry Intrusion Observed during TOGA COARE , 2002 .

[26]  Andrew Staniforth,et al.  Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model , 2008, J. Comput. Phys..

[27]  Richard Neale,et al.  Parameterizing Convective Organization to Escape the Entrainment Dilemma , 2011 .

[28]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[29]  J. Turner The motion of buoyant elements in turbulent surroundings , 1963, Journal of Fluid Mechanics.

[30]  A. P. Siebesma,et al.  Evaluation of Parametric Assumptions for Shallow Cumulus Convection , 1995 .

[31]  Sean Milton,et al.  Adaptive detrainment in a convective parametrization , 2011 .

[32]  A. Pier Siebesma,et al.  A Simple Parameterization for Detrainment in Shallow Cumulus , 2006 .

[33]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[34]  Cathy Hohenegger,et al.  Simulating deep convection with a shallow convection scheme , 2010 .

[35]  David A. Randall,et al.  Toward a Unified Parameterization of the Boundary Layer and Moist Convection. Part I: A New Type of Mass-Flux Model , 2001 .

[36]  J. Holland Comparative Evaluation of Some BOMEX Measurements of Sea Surface Evaporation, Energy Flux and Stress , 1972 .

[37]  H. E. Cramer,et al.  A THEORY OF ENTRAINMENT IN CONVECTIVE CURRENTS , 1951 .

[38]  M. Ahlgrimm Evaluating cloud frequency of occurrence and top height using space-borne lidar observations , 2009 .

[39]  Jonker,et al.  Anomalous scaling of cumulus cloud boundaries , 2000, Physical review letters.

[40]  D. Randall,et al.  Large‐Eddy Simulation of Maritime Deep Tropical Convection , 2009 .

[41]  P. Squires,et al.  The Microstructure and Colloidal Stability of Warm Clouds: Part I — The Relation between Structure and Stability , 1958 .

[42]  K.,et al.  Simulations of Trade Wind Cumuli under a Strong Inversion , 2001 .

[43]  Richard G. Forbes,et al.  The Impact of Low Clouds on Surface Shortwave Radiation in the ECMWF Model , 2012 .

[44]  A. Genio,et al.  The Role of Entrainment in the Diurnal Cycle of Continental Convection , 2010 .

[45]  Roel Neggers,et al.  A Multiparcel Model for Shallow Cumulus Convection , 2002 .

[46]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  Harm J. J. Jonker,et al.  Size Distributions and Dynamical Properties of Shallow Cumulus Clouds from Aircraft Observations and Satellite Data , 2003 .

[48]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[49]  S. Jonkers Evaluation study of the Kain-Fritsch convection scheme , 2004 .

[50]  David M. Romps,et al.  A Direct Measure of Entrainment , 2010 .

[51]  Pedro M. M. Soares,et al.  Sensitivity of moist convection to environmental humidity , 2004 .

[52]  C. Knight,et al.  Early Radar Echoes from Small, Warm Cumulus: Bragg and Hydrometeor Scattering , 1998 .

[53]  G. Raga,et al.  Characteristics of Cumulus Band Clouds off the Coast of Hawaii. , 1990 .

[54]  Jun-Ichi Yano,et al.  Estimations of Mass Fluxes for Cumulus Parameterizations from High-Resolution Spatial Data , 2004 .

[55]  C. Bretherton,et al.  An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST , 2005 .

[56]  Thijs Heus,et al.  Mixing in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking , 2008 .

[57]  David A. Randall,et al.  High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land , 2006 .

[58]  J. Done,et al.  Parameterization of Convection At Mesoscale Resolution , 2002 .

[59]  H. Jonker,et al.  The influence of the sub-cloud moisture field on cloud size distributions and the consequences for entrainment , 2006 .

[60]  S. Esbensen,et al.  Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets , 1973 .

[61]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[62]  J. W. Telford,et al.  Cloud Top Mixing in Small Cumuli , 1983 .

[63]  Christopher S. Bretherton,et al.  A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection , 2006 .

[64]  H. Stommel ENTRAINMENT OF AIR INTO A CUMULUS CLOUD , 1947 .

[65]  David A. Randall,et al.  A second-order bulk boundary-layer model , 1992 .

[66]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[67]  A. P. Siebesma,et al.  A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer , 2007 .

[68]  Robert Pincus,et al.  On Constraining Estimates of Climate Sensitivity with Present-Day Observations through Model Weighting , 2011 .

[69]  D. Mironov,et al.  Turbulence in the Lower Troposphere: Second-Order Closure and Mass–Flux Modelling Frameworks , 2008 .

[70]  A. Kasahara,et al.  A Theoretical Study of the Compensating Downward Motions Associated with Cumulus Clouds , 1967 .

[71]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[72]  J. Warner,et al.  The Water Content of Cumuliform Cloud , 1955 .

[73]  I. Kang,et al.  A bulk mass flux convection scheme for climate model: description and moisture sensitivity , 2011, Climate Dynamics.

[74]  George W. Platzman,et al.  An exact integral of complete spectral equations for unsteady one-dimensional flow , 1964 .

[75]  Alan K. Betts,et al.  Parametric Interpretation of Trade-Wind Cumulus Budget Studies , 1975 .

[76]  H. Kuo On the Controlling Influences of Eddy Diffusion on Thermal Convection , 1962 .

[77]  P. Squires,et al.  The Microstructure and Colloidal Stability of Warm Clouds , 1958 .

[78]  A. Arakawa,et al.  The Macroscopic Entrainment Processes of Simulated Cumulus Ensemble. Part I: Entrainment Sources , 1997 .

[79]  I. Paluch,et al.  The Entrainment Mechanism in Colorado Cumuli , 1979 .

[80]  A. P. Siebesma,et al.  Analogies between Mass-Flux and Reynolds-Averaged Equations , 2000 .

[81]  D. Gregory Estimation of entrainment rate in simple models of convective clouds , 2001 .

[82]  Thijs Heus,et al.  Turbulent dispersion in cloud-topped boundary layers , 2008 .

[83]  David A. Randall,et al.  Toward a Unified Parameterization of the Boundary Layer and Moist Convection. Part II: Lateral Mass Exchanges and Subplume-Scale Fluxes , 2001 .

[84]  A. Betts Mixing Line Analysis of Clouds and Cloudy Boundary Layers , 1985 .

[85]  D. Mironov Pressure‐potential‐temperature covariance in convection with rotation , 2001 .

[86]  Durga Ray On convection in atmosphere , 1966 .

[87]  Masahiro Sugiyama,et al.  A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles , 2010 .

[88]  R. S. Scorer,et al.  Bubble theory of penetrative convection , 1953 .

[89]  Ming Zhao,et al.  Life Cycle of Numerically Simulated Shallow Cumulus Clouds. Part II: Mixing Dynamics , 2005 .

[90]  A. P. Siebesma Shallow Cumulus Convection , 1998 .

[91]  M. Köhler,et al.  A Dual Mass Flux Framework for Boundary Layer Convection. Part I: Transport , 2009 .

[92]  M. Baker,et al.  Entrainment and Detrainment in Cumulus Clouds , 1991 .

[93]  Thijs Heus,et al.  Observational validation of the compensating mass flux through the shell around cumulus clouds , 2009 .

[94]  B. Geerts,et al.  Dynamics of the Cumulus Cloud Margin: An Observational Study , 2009 .

[95]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[96]  S. Lovejoy Area-Perimeter Relation for Rain and Cloud Areas , 1982, Science.

[97]  H. Graf,et al.  An Ensemble Cumulus Convection Parameterization with Explicit Cloud Treatment , 2010 .

[98]  J. T. Dawe,et al.  The Influence of the Cloud Shell on Tracer Budget Measurements of LES Cloud Entrainment , 2011 .

[99]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[100]  Frits H. Post,et al.  A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment , 2009 .

[101]  R. Neggers A Dual Mass Flux Framework for Boundary Layer Convection. Part II: Clouds , 2009 .

[102]  H. Jonker,et al.  Subsiding Shells Around Shallow Cumulus Clouds , 2008 .

[103]  A. Blyth,et al.  A Stochastic Mixing Model for Nonprecipitating Cumulus Clouds , 1986 .

[104]  J. T. Dawe,et al.  Interpolation of LES Cloud Surfaces for Use in Direct Calculations of Entrainment and Detrainment , 2011 .

[105]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[106]  João Paulo Teixeira,et al.  An eddy‐diffusivity/mass‐flux parametrization for dry and shallow cumulus convection , 2004 .