Multitask learning improves prediction of cancer drug sensitivity

[1]  Jun Wang,et al.  Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model , 2015, PLoS Comput. Biol..

[2]  Nci Dream Community A community effort to assess and improve drug sensitivity prediction algorithms , 2014 .

[3]  Mehmet Gönen,et al.  Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning , 2014, Bioinform..

[4]  N. Cox,et al.  Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines , 2014, Genome Biology.

[5]  Benjamin Haibe-Kains,et al.  Inconsistency in large pharmacogenomic studies , 2013, Nature.

[6]  Laura M. Heiser,et al.  Modeling precision treatment of breast cancer , 2013, Genome Biology.

[7]  Joshua C. Gilbert,et al.  An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules , 2013, Cell.

[8]  Eyke Hüllermeier,et al.  Multilabel classification for exploiting cross-resistance information in HIV-1 drug resistance prediction , 2013, Bioinform..

[9]  Levi A Garraway,et al.  Genomics-driven oncology: framework for an emerging paradigm. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Richard Simon,et al.  Implementing personalized cancer genomics in clinical trials , 2013, Nature Reviews Drug Discovery.

[11]  R. Karchin,et al.  Collections of simultaneously altered genes as biomarkers of cancer cell drug response. , 2013, Cancer research.

[12]  Julio Saez-Rodriguez,et al.  Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties , 2012, PloS one.

[13]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[14]  Jane Fridlyand,et al.  Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors , 2012, Nature.

[15]  Andrew L. Kung,et al.  Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. , 2012, Cancer cell.

[16]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[17]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[18]  Joshua M. Stuart,et al.  Subtype and pathway specific responses to anticancer compounds in breast cancer , 2011, Proceedings of the National Academy of Sciences.

[19]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[20]  Juri G. Gelovani,et al.  Methodological and practical challenges for personalized cancer therapies , 2011, Nature Reviews Clinical Oncology.

[21]  L. Garraway,et al.  Clinical implications of the cancer genome. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  Paul Tseng,et al.  Trace Norm Regularization: Reformulations, Algorithms, and Multi-Task Learning , 2010, SIAM J. Optim..

[23]  C. Sawyers The cancer biomarker problem , 2008, Nature.

[24]  Ian Collins,et al.  New approaches to molecular cancer therapeutics , 2006, Nature chemical biology.

[25]  R. Shoemaker The NCI60 human tumour cell line anticancer drug screen , 2006, Nature Reviews Cancer.

[26]  H. Zou,et al.  Addendum: Regularization and variable selection via the elastic net , 2005 .

[27]  Eytan Domany,et al.  Outcome signature genes in breast cancer: is there a unique set? , 2004, Breast Cancer Research.

[28]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[29]  Rich Caruana,et al.  Multitask Learning , 1997, Machine Learning.

[30]  J. Mesirov,et al.  Chemosensitivity prediction by transcriptional profiling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Perry,et al.  Effect of acute and chronic intermittent hypoxia on DNA topoisomerase IIα expression and mitomycin C-Induced DNA damage and cytotoxicity in human colon cancer cells , 1996 .

[32]  J N Weinstein,et al.  Neural computing in cancer drug development: predicting mechanism of action. , 1992, Science.