A critical analysis of transepithelial potential in intact killifish (Fundulus heteroclitus) subjected to acute and chronic changes in salinity

[1]  K. Brix,et al.  Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. , 2007, Aquatic toxicology.

[2]  C. Wood,et al.  Unidirectional Na+ and Ca2+ fluxes in two euryhaline teleost fishes, Fundulus heteroclitus and Oncorhynchus mykiss, acutely submitted to a progressive salinity increase , 2007, Journal of Comparative Physiology B.

[3]  M. Grosell,et al.  Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities? , 2006, Aquatic toxicology.

[4]  C. Wood,et al.  Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer , 2006, Journal of Experimental Biology.

[5]  K. Choe,et al.  COX2 in a euryhaline teleost, Fundulus heteroclitus: primary sequence, distribution, localization, and potential function in gills during salinity acclimation , 2006, Journal of Experimental Biology.

[6]  C. Wood,et al.  Appearance of cuboidal cells in relation to salinity in gills of Fundulus heteroclitus, a species exhibiting branchial Na+ but not Cl− uptake in freshwater , 2006, Cell and Tissue Research.

[7]  M. McDonald,et al.  Maintaining osmotic balance with an aglomerular kidney. , 2006, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[8]  C. Wood,et al.  Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport , 2005, Journal of Experimental Biology.

[9]  M. Grosell,et al.  Effects of salinity on copper accumulation in the common killifish (Fundulus heteroclitus) , 2005, Environmental toxicology and chemistry.

[10]  E. Hoffmann,et al.  Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium , 2005, Journal of Experimental Biology.

[11]  J. Zadunaisky,et al.  Passive sodium movements across the opercular epithelium: The paracellular shunt pathway and ionic conductance , 1980, The Journal of Membrane Biology.

[12]  W. Marshall Ion transport, osmoregulation, and acid-base balance , 2005 .

[13]  M. Grosell 6 Ion Transport, Osmoregulation, and Acid-Base Balance , 2005 .

[14]  J. Tomasso,et al.  Physiological basis for large differences in resistance to nitrite among freshwater and freshwater-acclimated euryhaline fishes. , 2005, Environmental science & technology.

[15]  C. Wood,et al.  Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). , 2004, Aquatic toxicology.

[16]  C. Wood,et al.  Intraspecific divergence of ionoregulatory physiology in the euryhaline teleost Fundulus heteroclitus: possible mechanisms of freshwater adaptation , 2004, Journal of Experimental Biology.

[17]  B. Forbush,et al.  Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. , 2004, American journal of physiology. Cell physiology.

[18]  A. Hedges,et al.  Gill potentials in marine teleosts , 1991, Journal of Comparative Physiology B.

[19]  A. Hedges,et al.  The in vivo transepithelial potential in a marine teleost , 1991, Journal of Comparative Physiology B.

[20]  B. Cherksey,et al.  Adrenergic regulation of chloride secretion across the opercular epithelium: The role of cyclic AMP , 1981, Journal of comparative physiology.

[21]  W. Potts,et al.  The effects of pH and calcium concentrations on gill potentials in the Brown Trout,Salmo trutta , 1978, Journal of comparative physiology.

[22]  P. Pic A comparative study of the mechanism of Na+ and Cl− excretion by the gill ofMugil capito andFundulus heteroclitus: Effects of Stress , 1978, Journal of comparative physiology.

[23]  F. Eddy The effect of calcium on gill potentials and on sodium and chloride fluxes in the goldfish,Carassius auratus , 1975, Journal of comparative physiology.

[24]  K. Degnan,et al.  Converging adrenergic and cholinergic mechanisms in the inhibition of Cl secretion in fish opercular epithelium , 2004, Journal of Comparative Physiology B.

[25]  W. Marshall Rapid regulation of NaCl secretion by estuarine teleost fish: coping strategies for short-duration freshwater exposures. , 2003, Biochimica et biophysica acta.

[26]  C. Wood,et al.  Na+ versus Cl- transport in the intact killifish after rapid salinity transfer. , 2003, Biochimica et biophysica acta.

[27]  T. Kaneko,et al.  Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established `time-differential double fluorescent staining' technique , 2003, Journal of Experimental Biology.

[28]  W. Marshall,et al.  Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. , 2002, The Journal of experimental biology.

[29]  Ove Sten-Knudsen,et al.  Biological membranes : theory of transport, potentials and electrical impulses , 2002 .

[30]  T. Adilakshmi,et al.  A novel 14-3-3 gene is osmoregulated in gill epithelium of the euryhaline teleost Fundulus heteroclitus. , 2001, The Journal of experimental biology.

[31]  W. Marshall,et al.  Dynamics of pavement cell-chloride cell interactions during abrupt salinity change in Fundulus heteroclitus. , 2001, The Journal of experimental biology.

[32]  Y. Takagi,et al.  Distinct seawater and freshwater types of chloride cells in killifish, Fundulus heteroclitus , 2001 .

[33]  C. Wood,et al.  Ion and acid-base regulation in the freshwater mummichog (Fundulus heteroclitus): A departure from the standard model for freshwater teleosts , 1999 .

[34]  C. Wood,et al.  IONIC TRANSPORT BY THE OPERCULAR EPITHELIA OF FRESHWATER ACCLIMATED TILAPIA (OREOCHROMIS NILOTICUS) AND KILLIFISH (FUNDULUS HETEROCLITUS) , 1998 .

[35]  Gillis,et al.  Neural modulation of salt secretion in teleostopercular epithelium by 2-adrenergic receptors and inositol 1,4,5-trisphosphate , 1998, The Journal of experimental biology.

[36]  C. Higgins,et al.  A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F. heteroclitus. , 1998, American journal of physiology. Cell physiology.

[37]  W. Marshall,et al.  Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. , 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[38]  C. Wood,et al.  Characterization of ion and acid‐base transport in the fresh water adapted mummichog (Fundulus heteroclitus) , 1997 .

[39]  Walsh,et al.  Pulsatile urea excretion in the toadfish (Opsanus beta) is due to a pulsatile excretion mechanism, not a pulsatile production mechanism , 1997, The Journal of experimental biology.

[40]  C. Wood,et al.  NaCl transport and ultrastructure of opercular epithelium from a freshwater-adapted euryhaline teleost, Fundulus heteroclitus , 1997 .

[41]  C. Wood,et al.  Ion balance, acid-base regulation, and chloride cell function in the common killifish,Fundulus heteroclitus—a euryhaline estuarine teleost , 1994 .

[42]  D. Houlihan,et al.  Advances in Comparative and Environmental Physiology , 1991, Advances in Comparative and Environmental Physiology.

[43]  R. Gilles,et al.  NaCl Transport in Gills and Related Structures , 1988 .

[44]  B. J. Abraham Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). MUMMICHOG AND STRIPED KILLIFISH. , 1985 .

[45]  S. Perry,et al.  Kinetics of Branchial Calcium Uptake in the Rainbow Trout: Effects of Acclimation to Various External Calcium Levels , 1985 .

[46]  J. Zadunaisky 5 The Chloride Cell: The Active Transport of Chloride and the Paracellular Pathways , 1984 .

[47]  W. Potts 4 Transepithelial Potentials in Fish Gills , 1984 .

[48]  K. Karnaky Ion-secreting epithelia: chloride cells in the head region of Fundulus heteroclitus. , 1980, The American journal of physiology.

[49]  J. Zadunaisky,et al.  Open‐circuit sodium and chloride fluxes across isolated opercular epithelia from the teleost Fundulus heteroclitus. , 1979, The Journal of physiology.

[50]  D. Evans,et al.  HCO3-stimulated Cl efflux in the gulf toadfish acclimated to sea water. , 1979, The Journal of experimental zoology.

[51]  J. Hempel,et al.  Rapid modulation of gill Na+ + K+-dependent ATPase activity during acclimation of the killifish Fundulus heteroclitus to salinity change. , 1977, The Journal of experimental zoology.

[52]  J. Zadunaisky,et al.  Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill‐like epithelium rich in chloride cells , 1977, The Journal of physiology.

[53]  F. Epstein,et al.  Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. , 1977, The Journal of experimental zoology.

[54]  R. W. Griffith Environment and Salinity Tolerance in the Genus Fundulus , 1974 .

[55]  J. Maetz,et al.  On the electrical gradient across the gill of the sea water-adapted eel. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.

[56]  T. Kerstetter,et al.  On the Mechanisms of Sodium Ion Transport by the Irrigated Gills of Rainbow Trout (Salmo gairdneri) , 1970, The Journal of general physiology.

[57]  L. B. Kirschner The study of NaCl transport in aquatic animals. , 1970, American zoologist.

[58]  C. E. Lucas Physiology of Fishes , 1970, Nature.

[59]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.

[60]  D. Evans,et al.  Sodium and chloride balance in the killifish Fundulus heteroclitus. , 1967, The Biological bulletin.

[61]  J. Maetz,et al.  Evolution de la balance minérale du sodium chez Fundulus heteroclitus au cours du transfert d'eau de mer en eau douce: Effects de l'hypophysectomie et de la prolactine , 1967 .

[62]  R. Motais,et al.  Exchange Diffusion Effect and Euryhalinity in Teleosts , 1966, The Journal of general physiology.

[63]  D. Copeland,et al.  FINE STRUCTURE OF CHLORIDE CELLS FROM THREE SPECIES OF FUNDULUS , 1963, The Journal of cell biology.

[64]  K. Wolf Physiological Salines for Fresh-Water Teleosts , 1963 .

[65]  D. Copeland Adaptive behavior of the chloride cell in the gill of fundulus heteroclitus , 1950, Journal of morphology.

[66]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.