The SOS Regulatory System

[1]  B. Demple,et al.  Adaptive responses to oxidative stress: the soxRS and oxyR regulons , 1996 .

[2]  C. Georgopoulos,et al.  Heat Shock Regulation , 1996 .

[3]  Jeffrey Green,et al.  The FNR Modulon and FNR-Regulated Gene Expression , 1996 .

[4]  S. Kowalczykowski,et al.  Biochemistry of homologous recombination in Escherichia coli. , 1994, Microbiological reviews.

[5]  D. Mount,et al.  Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. , 1994, Journal of molecular biology.

[6]  Z. Livneh,et al.  Beta subunit of DNA polymerase III holoenzyme is induced upon ultraviolet irradiation or nalidixic acid treatment of Escherichia coli. , 1994, Mutation research.

[7]  A. Hochschild,et al.  Specificity determinants for the interaction of lambda repressor and P22 repressor dimers. , 1994, Genes & development.

[8]  A. Dri,et al.  Control of the LexA regulon by pH: evidence for a reversible inactivation of the LexA repressor during the growth cycle of Escherichia coli , 1994, Molecular microbiology.

[9]  P. Youderian,et al.  Genetic selection for mutations that impair the co‐operative binding of lambda repressor , 1994, Molecular microbiology.

[10]  D. Mount,et al.  Novel mechanism for UV sensitivity and apparent UV nonmutability of recA432 mutants: persistent LexA cleavage following SOS induction , 1993, Journal of bacteriology.

[11]  K. Cho,et al.  Purification of an SOS repressor from Bacillus subtilis , 1993, Journal of bacteriology.

[12]  D. Cheo,et al.  Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system , 1993, Journal of bacteriology.

[13]  E. G. Frank,et al.  Targeting of the UmuD, UmuD', and MucA' mutagenesis proteins to DNA by RecA protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. W. Little LexA cleavage and other self-processing reactions , 1993, Journal of bacteriology.

[15]  J. W. Little,et al.  LexA and λ Cl repressors as enzymes: Specific cleavage in an intermolecular reaction , 1993, Cell.

[16]  E. Egelman,et al.  The LexA repressor binds within the deep helical groove of the activated RecA filament. , 1993, Journal of molecular biology.

[17]  A. Dri,et al.  Phosphate starvation and low temperature as well as ultraviolet irradiation transcriptionally induce the Escherichia coli LexA‐controlled gene sfiA , 1993, Molecular microbiology.

[18]  J. W. Little,et al.  Highly cooperative DNA binding by the coliphage HK022 repressor. , 1993, Journal of molecular biology.

[19]  E. Egelman,et al.  Similarity of the yeast RAD51 filament to the bacterial RecA filament. , 1993, Science.

[20]  C. Thompson,et al.  Characterization of dinY, a new Escherichia coli DNA repair gene whose products are damage inducible even in a lexA(Def) background , 1993, Journal of bacteriology.

[21]  A. Engel,et al.  The inactive form of recA protein: the ‘compact’ structure. , 1993, The EMBO journal.

[22]  J. A. Rupley,et al.  In vitro analysis of mutant LexA proteins with an increased rate of specific cleavage. , 1992, Journal of molecular biology.

[23]  S. Kowalczykowski,et al.  Biochemical basis of the constitutive repressor cleavage activity of recA730 protein. A comparison to recA441 and recA803 proteins. , 1992, The Journal of biological chemistry.

[24]  E. Egelman,et al.  Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. , 1992, Journal of molecular biology.

[25]  R. Ruigrok,et al.  Activation of recA protein. The open helix model for LexA cleavage. , 1992, Journal of molecular biology.

[26]  Irene T. Weber,et al.  The structure of the E. coli recA protein monomer and polymer , 1992, Nature.

[27]  J. W. Little,et al.  Dimerization of a specific DNA-binding protein on the DNA. , 1992, Science.

[28]  D. Friedman Interaction between bacteriophage λ and its Escherichia coli host , 1992 .

[29]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[30]  James D. Spain,et al.  Computer Simulation in Biology: A BASIC Introduction , 1991 .

[31]  S. N. Slilaty,et al.  The role of electrostatic interactions in the mechanism of peptide bond hydrolysis by a Ser-Lys catalytic dyad. , 1991, Protein engineering.

[32]  N. Guillén,et al.  Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis , 1991, Journal of bacteriology.

[33]  M. Smith,et al.  Mutant LexA proteins with an increased rate of in vivo cleavage. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Weinstock,et al.  The promoter of the recA gene of Escherichia coli. , 1991, Biochimie.

[35]  M Schnarr,et al.  DNA binding properties of the LexA repressor. , 1991, Biochimie.

[36]  J. W. Little Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. , 1991, Biochimie.

[37]  E. Witkin RecA protein in the SOS response: milestones and mysteries. , 1991, Biochimie.

[38]  S. Kustu,et al.  Prokaryotic transcriptional enhancers and enhancer-binding proteins. , 1991, Trends in biochemical sciences.

[39]  J. Battista,et al.  Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Roland,et al.  Reaction of LexA repressor with diisopropyl fluorophosphate. A test of the serine protease model. , 1990, The Journal of biological chemistry.

[41]  Jeffrey W. Roberts,et al.  Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. , 1990, Journal of molecular biology.

[42]  J. Menetski,et al.  Biochemical properties of the Escherichia coli recA430 protein. Analysis of a mutation that affects the interaction of the ATP-recA protein complex with single-stranded DNA. , 1990, Journal of molecular biology.

[43]  M. Cox,et al.  The RecA Protein: Structure and Function , 1990 .

[44]  J. W. Little,et al.  Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins. , 1989, Journal of molecular biology.

[45]  M. Ptashne,et al.  P22 repressor mutants deficient in co‐operative binding and DNA loop formation. , 1989, The EMBO journal.

[46]  J. Egan,et al.  UV induction of coliphage 186: prophage induction as an SOS function. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Weisberg,et al.  Structure and function of the nun gene and the immunity region of the lambdoid phage HK022. , 1989, Journal of molecular biology.

[48]  T. Ogawa,et al.  Stimulation of RecA-mediated cleavage of phage phi 80 cI repressor by deoxydinucleotides. , 1988, Journal of molecular biology.

[49]  M. Sassanfar,et al.  Activation of protease-constitutive recA proteins of Escherichia coli by all of the common nucleoside triphosphates , 1988, Journal of bacteriology.

[50]  I. Tessman,et al.  Activation of protease-constitutive recA proteins of Escherichia coli by rRNA and tRNA , 1988, Journal of bacteriology.

[51]  T. Ogawa,et al.  Cleavage of bacteriophage φ80 CI repressor by RecA protein , 1988 .

[52]  J. W. Little,et al.  Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12 , 1988, Journal of bacteriology.

[53]  R. Scheuermann,et al.  UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Battista,et al.  RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[55]  H. Shinagawa,et al.  RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Mount,et al.  Derepression of specific genes promotes DNA repair and mutagenesis in Escherichia coli , 1988, Journal of bacteriology.

[57]  J. W. Little,et al.  Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. Mount,et al.  Differential repression of SOS genes by unstable lexA41 (tsl-1) protein causes a "split-phenotype" in Escherichia coli K-12. , 1987, Journal of molecular biology.

[59]  R. Sauer,et al.  Lambda repressor inactivation: properties of purified ind- proteins in the autodigestion and RecA-mediated cleavage reactions. , 1986, Journal of molecular biology.

[60]  J. A. Rupley,et al.  Intramolecular cleavage of LexA and phage lambda repressors: dependence of kinetics on repressor concentration, pH, temperature, and solvent. , 1986, Biochemistry.

[61]  R. Yasbin,et al.  Induction of the Bacillus subtilis SOS-like response by Escherichia coli RecA protein. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[62]  E. S. Tessman,et al.  Plaque color method for rapid isolation of novel recA mutants of Escherichia coli K-12: new classes of protease-constitutive recA mutants , 1985, Journal of bacteriology.

[63]  E. Keller,et al.  A feeling for the organism : the life and work of Barbara McClintock , 1985 .

[64]  M. Daune,et al.  Large-scale purification, oligomerization equilibria, and specific interaction of the LexA repressor of Escherichia coli. , 1985, Biochemistry.

[65]  J. Roberts,et al.  Purification of a RecA protein analogue from Bacillus subtilis. , 1985, The Journal of biological chemistry.

[66]  J. W. Little,et al.  Autodigestion of lexA and phage lambda repressors. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[67]  G. Walker Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. , 1984, Microbiological reviews.

[68]  J. W. Little,et al.  The SOS regulatory system: control of its state by the level of RecA protease. , 1983, Journal of molecular biology.

[69]  R. Brent,et al.  Regulation and autoregulation by lexA protein. , 1982, Biochimie.

[70]  E. Witkin From Gainesville to Toulouse: the evolution of a model. , 1982, Biochimie.

[71]  R. Doolittle,et al.  Homology among DNA-binding proteins suggests use of a conserved super-secondary structure , 1982, Nature.

[72]  D. Mount,et al.  The SOS regulatory system of Escherichia coli , 1982, Cell.

[73]  Aziz Sancar,et al.  The uvrB gene of Escherichia coli has both lexA-repressed and lexA-independent promoters , 1982, Cell.

[74]  T. Horii,et al.  Regulation of SOS functions: Purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein , 1981, Cell.

[75]  Mark Ptashne,et al.  λ Repressor and cro—components of an efficient molecular switch , 1981, Nature.

[76]  D. Mount,et al.  Purified lexA protein is a repressor of the recA and lexA genes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M Ptashne,et al.  Mechanism of action of the lexA gene product. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Jeffrey W. Roberts,et al.  Two mutations that alter the regulatory activity of E. coli recA protein , 1981, Nature.

[79]  M. Oishi,et al.  Prophage (phi 80) induction in Escherichia coli K-12 by specific deoxyoligonucleotides. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Mount,et al.  Cleavage of the Escherichia coli lexA protein by the recA protease. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Brent,et al.  The lexA gene product represses its own promoter. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Jeffrey W. Roberts,et al.  E. coli recA protein-directed cleavage of phage λ repressor requires polynucleotide , 1980, Nature.

[83]  J. W. Little,et al.  Identification of the lexA gene product of Escherichia coli K-12. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[84]  A. Lévine,et al.  Inactivation of prophage λ repressor in Vivo , 1979 .

[85]  R. Sauer DNA sequence of the bacteriophage λ cI gene , 1978, Nature.

[86]  J. Roberts,et al.  Escherichia coli recA gene product inactivates phage lambda repressor. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[87]  K. McEntee Protein X is the product of the recA gene of Escherichia coli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[88]  D. Mount,et al.  Identification of the recA (tif) gene product of Escherichia coli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[89]  D. Mount A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[90]  E. Witkin Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. , 1976, Bacteriological reviews.

[91]  K. McEntee,et al.  Identification and radiochemical purification of the recA protein of Escherichia coli K-12. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[92]  A. Pardee,et al.  Model for regulation of Escherichia coli DNA repair functions. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[93]  M. Radman,et al.  SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. , 1975, Basic life sciences.

[94]  J. Roberts,et al.  Proteolytic cleavage of bacteriophage lambda repressor in induction. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[95]  P. Hanawalt,et al.  Molecular Mechanisms for Repair of DNA , 1975, Basic Life Sciences.

[96]  D. Mount,et al.  Dominant Mutations (lex) in Escherichia coli K-12 Which Affect Radiation Sensitivity and Frequency of Ultraviolet Light-Induced Mutations , 1972, Journal of bacteriology.

[97]  M. Radman,et al.  Ultraviolet reactivation and ultraviolet mutagenesis of λ in different genetic systems , 1971 .

[98]  F. Jacob,et al.  Prophage induction and filament formation in a mutant strain of Escherichia coli. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[99]  E. Witkin The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[100]  K. Brooks,et al.  Behavior of λ Bacteriophage in a Recombination Deficient Strain of Escherichia coli , 1967 .

[101]  S. Luria,et al.  Transduction studies on the role of a rec+ gene in the ultraviolet induction of prophage lambda. , 1967, Journal of molecular biology.

[102]  A J CLARK,et al.  ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[103]  G. K. Smelser The structure of the eye , 1961 .