A low-complexity MIMO subspace detection algorithm

A low-complexity multiple-input multiple-output (MIMO) subspace detection algorithm is proposed. It is based on decomposing a MIMO channel into multiple subsets of decoupled streams that can be detected separately. The new scheme employs triangular decomposition followed by elementary matrix operations to transform the channel into a generalized elementary matrix whose structure matches the subsets of streams to be detected. The proposed approach avoids matrix inversion and allows subsets to overlap, thus achieving better diversity gain. An optimized detector architecture based on a 2-by-2 ML detector core is also presented. Simulations demonstrate that the proposed algorithm performs to within a few tenths of a dB from the optimum detection algorithm.

[1]  Nam Ik Cho,et al.  Improved linear soft-input soft-output detection via soft feedback successive interference cancellation , 2010, IEEE Transactions on Communications.

[2]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[3]  Rodrigo C. de Lamare,et al.  Adaptive Reduced-Rank Equalization Algorithms Based on Alternating Optimization Design Techniques for MIMO Systems , 2011, IEEE Trans. Veh. Technol..

[4]  Arogyaswami Paulraj,et al.  MIMO Wireless Communications: Introduction , 2007 .

[5]  Chih-Hung Lin,et al.  Iterative $QR$ Decomposition Architecture Using the Modified Gram–Schmidt Algorithm for MIMO Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Ahmed M. Eltawil,et al.  Design and Implementation of a Sort-Free K-Best Sphere Decoder , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Mojtaba Mahdavi,et al.  Novel MIMO Detection Algorithm for High-Order Constellations in the Complex Domain , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[9]  Michael P. Fitz,et al.  On Layer Ordering Techniques for Near-optimal MIMO Detectors , 2007, 2007 IEEE Wireless Communications and Networking Conference.

[10]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[11]  Taewon Hwang,et al.  Energy Spreading Transform Approach to Achieve Full Diversity and Full Rate for MIMO Systems , 2012, IEEE Transactions on Signal Processing.

[12]  Babak Hassibi,et al.  An efficient square-root algorithm for BLAST , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[13]  Ahmed M. Eltawil,et al.  Evaluation Framework for k-Best Sphere Decoders , 2010, J. Circuits Syst. Comput..

[14]  Xi Chen,et al.  VLSI Implementation of a High-Throughput Iterative Fixed-Complexity Sphere Decoder , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  A. Burg,et al.  VLSI implementation of MIMO detection using the sphere decoding algorithm , 2005, IEEE Journal of Solid-State Circuits.

[16]  Dejan Markovic,et al.  A Flexible DSP Architecture for MIMO Sphere Decoding , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Wai Ho Mow,et al.  A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[18]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[19]  A. Robert Calderbank,et al.  MIMO Wireless Communications , 2007 .

[20]  Chih-Hung Lin,et al.  Iterative QR Decomposition Architecture Using the Modified Gram-Schmidt Algorithm for MIMO Systems , 2010, IEEE Trans. Circuits Syst. I Regul. Pap..

[21]  Tong Zhang,et al.  A 1.1-Gb/s 115-pJ/bit Configurable MIMO Detector Using 0.13- $\mu\hbox{m}$ CMOS Technology , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Liang Liu,et al.  Area-Efficient Configurable High-Throughput Signal Detector Supporting Multiple MIMO Modes , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Louay M. A. Jalloul,et al.  Reduced Complexity Soft-Output MIMO Sphere Detectors—Part II: Architectural Optimizations , 2014, IEEE Transactions on Signal Processing.

[24]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[25]  Pei-Yun Tsai,et al.  Toward Multi-Gigabit Wireless: Design of High-Throughput MIMO Detectors With Hardware-Efficient Architecture , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Joseph R. Cavallaro,et al.  Trellis-Search Based Soft-Input Soft-Output MIMO Detector: Algorithm and VLSI Architecture , 2012, IEEE Transactions on Signal Processing.

[27]  Nambi Seshadri,et al.  Subspace beamforming for near-capacity MIMO performance , 2008 .

[28]  Erik G. Larsson,et al.  Joint Source-Channel Coding for the MIMO Broadcast Channel , 2012, IEEE Transactions on Signal Processing.

[29]  B. Hochwald,et al.  Silicon complexity for maximum likelihood MIMO detection using spherical decoding , 2004, IEEE Journal of Solid-State Circuits.

[30]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[31]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[32]  R. C. de Lamare,et al.  Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for Multi-Antenna Systems , 2013, IEEE Transactions on Wireless Communications.

[33]  Michael P. Fitz,et al.  A Novel Soft-Output Layered Orthogonal Lattice Detector for Multiple Antenna Communications , 2006, 2006 IEEE International Conference on Communications.

[34]  Helmut Bölcskei,et al.  Soft-output sphere decoding: algorithms and VLSI implementation , 2008, IEEE Journal on Selected Areas in Communications.

[35]  Dejan Markovic,et al.  A 2.89mW 50GOPS 16×16 16-core MIMO sphere decoder in 90nm CMOS , 2009, 2009 Proceedings of ESSCIRC.

[36]  Gerd Ascheid,et al.  A 772Mbit/s 8.81bit/nJ 90nm CMOS soft-input soft-output sphere decoder , 2011, IEEE Asian Solid-State Circuits Conference 2011.

[37]  Mohamed Oussama Damen,et al.  Lattice code decoder for space-time codes , 2000, IEEE Communications Letters.

[38]  Björn E. Ottersten,et al.  On the complexity of sphere decoding in digital communications , 2005, IEEE Transactions on Signal Processing.

[39]  Zhan Guo,et al.  A VLSI architecture of the Schnorr-Euchner decoder for MIMO systems , 2004, Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710).

[40]  Christoph Studer,et al.  ASIC Implementation of Soft-Input Soft-Output MIMO Detection Using MMSE Parallel Interference Cancellation , 2011, IEEE Journal of Solid-State Circuits.

[41]  Jun Yu Li,et al.  Joint transceiver design for MIMO communications using geometric mean decomposition , 2005, IEEE Transactions on Signal Processing.

[42]  Helmut Bölcskei,et al.  On the Complexity Distribution of Sphere Decoding , 2011, IEEE Transactions on Information Theory.

[43]  K. Kammeyer,et al.  Efficient algorithm for decoding layered space-time codes , 2001 .

[44]  P. Glenn Gulak,et al.  A 675 Mbps, 4 × 4 64-QAM K-Best MIMO Detector in 0.13 µm CMOS , 2012, IEEE Trans. Very Large Scale Integr. Syst..

[45]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[46]  Louay M. A. Jalloul,et al.  Reduced Complexity Soft-Output MIMO Sphere Detectors—Part I: Algorithmic Optimizations , 2014, IEEE Transactions on Signal Processing.

[47]  K.-D. Kammeyer,et al.  MMSE extension of V-BLAST based on sorted QR decomposition , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[48]  Reinaldo A. Valenzuela,et al.  Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture , 1999 .