Superintegrability and higher order integrals for quantum systems

We refine a method for finding a canonical form of symmetry operators of arbitrary order for the Schrödinger eigenvalue equation HΨ ≡ (Δ2 + V)Ψ = EΨ on any 2D Riemannian manifold, real or complex, that admits a separation of variables in some orthogonal coordinate system. The flat space equations with potentials V = α(x + iy)k − 1/(x − iy)k + 1 in Cartesian coordinates, and V = αr2 + β/r2cos 2kθ + γ/r2sin 2kθ (the Tremblay, Turbiner and Winternitz system) in polar coordinates, have each been shown to be classically superintegrable for all rational numbers k. We apply the canonical operator method to give a constructive proof that each of these systems is also quantum superintegrable for all rational k. We develop the classical analog of the quantum canonical form for a symmetry. It is clear that our methods will generalize to other Hamiltonian systems.

[1]  W. Miller,et al.  Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.

[2]  W. Miller,et al.  Families of classical subgroup separable superintegrable systems , 2009, 0912.3158.

[3]  C. Quesne Superintegrability of the Tremblay–Turbiner–Winternitz quantum Hamiltonians on a plane for odd k , 2009, 0911.4404.

[4]  P. Winternitz,et al.  Periodic orbits for an infinite family of classical superintegrable systems , 2009, 0910.0299.

[5]  W. Miller,et al.  Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics , 2009, 0908.4393.

[6]  P. Winternitz,et al.  An infinite family of solvable and integrable quantum systems on a plane , 2009, 0904.0738.

[7]  A. Hinze,et al.  Second order superintegrable systems in conformally flat spaces . 2 : The classical 2 D Stäckel transform , 2009 .

[8]  E. Kalnins Second order superintegrable systems in conformally flat spaces . V : 2 D and 3 D quantum systems , 2009 .

[9]  N. Evans,et al.  Superintegrability of the Caged Anisotropic Oscillator , 2008, 0808.2146.

[10]  W. Miller,et al.  Models for quadratic algebras associated with second order superintegrable systems in 2D , 2008, 0801.2848.

[11]  N. Evans,et al.  A new superintegrable Hamiltonian , 2007, 0712.3677.

[12]  M. Błaszak,et al.  Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems , 2007, Journal of Physics A: Mathematical and Theoretical.

[13]  W. Miller,et al.  Symmetries and overdetermined systems of partial differential equations , 2008 .

[14]  W. Miller,et al.  Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties , 2007 .

[15]  W. Miller,et al.  Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties , 2007, 0708.3044.

[16]  W. Miller,et al.  Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems , 2006 .

[17]  C. Daskaloyannis,et al.  Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold , 2004, math-ph/0412055.

[18]  W. Miller,et al.  Infinite-order symmetries for quantum separable systems , 2005 .

[19]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform , 2005 .

[20]  W. Miller,et al.  Superintegrability in Classical and Quantum Systems , 2004 .

[21]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[22]  W. Miller,et al.  Infinite order symmetries for two-dimensional separable Schrödinger equations , 2004 .

[23]  W. Miller,et al.  Complete sets of invariants for dynamical systems that admit a separation of variables , 2002 .

[24]  W. Miller,et al.  Completeness of superintegrability in two-dimensional constant-curvature spaces , 2001, math-ph/0102006.

[25]  G. Pucacco,et al.  A unified treatment of quartic invariants at fixed and arbitrary energy , 1998, solv-int/9811005.

[26]  Jarmo Hietarinta,et al.  Direct methods for the search of the second invariant , 1987 .

[27]  B. Dorizzi,et al.  Coupling-Constant Metamorphosis and Duality between Integrable Hamiltonian Systems , 1984 .

[28]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[29]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[30]  Luther Pfahler Eisenhart,et al.  Separable Systems of Stackel , 1934 .