Rough terrain mapping and classification for foothold selection in a walking robot

This paper presents an algorithm for real-time building of a local grid-based elevation map from noisy 2D range measurements of the Hokuyo URG-04LX miniature laser scanner. The terrain mapping module supports a foothold selection algorithm, which employs a polynomial-based approximation method to create an adaptive decision surface. The robot learns from simple simulations, therefore no a priori expert-given rules or parameters are used. The acquired terrain map and planned footholds enable the robot to walk more stable, avoiding slippages and fall-downs.

[1]  Yiannis Gatsoulis,et al.  Mobile Robotic Issues for Urban Search and Rescue , 2008 .

[2]  C. Thorpe,et al.  Eye-safe laser line striper for outside use , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[3]  Stefan Schaal,et al.  Learning locomotion over rough terrain using terrain templates , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Andreas Birk,et al.  Hough based terrain classification for realtime detection of drivable ground , 2008, J. Field Robotics.

[5]  Andreas Birk,et al.  A Characterization of 3D Sensors for Response Robots , 2009, RoboCup.

[6]  Wolfram Burgard,et al.  A Bayesian regression approach to terrain mapping and an application to legged robot locomotion , 2009, J. Field Robotics.

[7]  Dominik Belter,et al.  Population-based Methods for Identification and Optimization of a Walking Robot Model , 2009 .

[8]  Ivan Tanev,et al.  Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot , 2005, IEEE Transactions on Robotics.

[9]  Piotr Skrzypczynski,et al.  Map-based adaptive foothold planning for unstructured terrain walking , 2010, 2010 IEEE International Conference on Robotics and Automation.

[10]  M. S. Voss,et al.  ARMA MODEL SELECTION USING PARTICLE SWARM OPTIMIZATION AND AIC CRITERIA , 2002 .

[11]  Cang Ye,et al.  A novel filter for terrain mapping with laser rangefinders , 2004, IEEE Transactions on Robotics.

[12]  Cang Ye,et al.  Characterization of the Hokuyo URG-04LX laser rangefinder for mobile robot obstacle negotiation , 2009, Defense + Commercial Sensing.

[13]  Roland Siegwart,et al.  Characterization of the compact Hokuyo URG-04LX 2D laser range scanner , 2009, 2009 IEEE International Conference on Robotics and Automation.

[14]  Regis Hoffman,et al.  Terrain mapping for a walking planetary rover , 1994, IEEE Trans. Robotics Autom..

[15]  Wolfram Burgard,et al.  Monte Carlo localization in outdoor terrains using multilevel surface maps , 2008 .

[16]  Surya P. N. Singh,et al.  Attitude Estimation for Dynamic Legged Locomotion Using Range and Inertial Sensors , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[18]  Piotr Skrzypczyński,et al.  TERRAIN PERCEPTION AND MAPPING IN A WALKING ROBOT WITH A COMPACT 2D LASER SCANNER , 2010 .

[19]  Martial Hebert,et al.  Analysis and Removal of Artifacts in 3-D LADAR Data , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[20]  Andrew Y. Ng,et al.  Stereo vision and terrain modeling for quadruped robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[21]  Piotr Skrzypczynski,et al.  Spatial Uncertainty Management for Simultaneous Localization and Mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[22]  Wolfram Burgard,et al.  Learning predictive terrain models for legged robot locomotion , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Rüdiger Dillmann,et al.  Navigation of Walking Robots: Localisation by Odometry , 2005 .

[24]  Piotr Skrzypczynski,et al.  Terrain Perception for a Walking Robot with a Low-Cost Structured Light Sensor , 2009, ECMR.

[25]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Tatsuo Arai,et al.  Application of a 'limb mechanism' robot to rescue tasks , 2002, Adv. Robotics.

[27]  Reid G. Simmons,et al.  Perception, Planning, and Control for Autonomous Walking With the Ambler Planetary Rover , 1996, Int. J. Robotics Res..

[28]  Andrew Y. Ng,et al.  A control architecture for quadruped locomotion over rough terrain , 2008, 2008 IEEE International Conference on Robotics and Automation.

[29]  S. Pizzuti,et al.  Adaptive Parameterization of Evolutionary Algorithms Driven by Reproduction and Competition , 2000 .

[30]  Adam Schmidt,et al.  The Visual SLAM System for a Hexapod Robot , 2010, ICCVG.

[31]  C. Sammut,et al.  Extracting Terrain Features from Range Images for Autonomous Random Stepfield Traversal , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.

[32]  Joachim Hertzberg,et al.  6D SLAM—3D mapping outdoor environments , 2007, J. Field Robotics.

[33]  Wolfram Burgard,et al.  An Efficient Extension to Elevation Maps for Outdoor Terrain Mapping and Loop Closing , 2007, Int. J. Robotics Res..

[34]  Pablo González de Santos,et al.  A Multi-Modal and Collaborative Human–Machine Interface for a Walking Robot , 2002, J. Intell. Robotic Syst..

[35]  Jerry E. Pratt,et al.  A Controller for the LittleDog Quadruped Walking on Rough Terrain , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[36]  Wolfram Burgard,et al.  A Bayesian regression approach to terrain mapping and an application to legged robot locomotion , 2009 .

[37]  Piotr Skrzypczynski,et al.  A biologically inspired approach to feasible gait learning for a hexapod robot , 2010, Int. J. Appl. Math. Comput. Sci..

[38]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[39]  Michael Beetz,et al.  Gaussian process modeling of large-scale terrain , 2009 .

[40]  L. Goddard Approximation of Functions , 1965, Nature.

[41]  Rüdiger Dillmann,et al.  Six-legged walking in rough terrain based on foot point planning , 2009 .

[42]  Timothy Bretl,et al.  Motion Planning for Legged Robots on Varied Terrain , 2008, Int. J. Robotics Res..

[43]  Tomas Möller,et al.  A fast triangle-triangle intersection test , 1997 .

[44]  Martin David Adams Sensor Modelling, Design and Data Processing for Autonomous Navigation , 1999, World Scientific Series in Robotics and Intelligent Systems.