Current Open Problems in Discrete and Computational Geometry
暂无分享,去创建一个
[1] Haim Kaplan,et al. Simple Proofs of Classical Theorems in Discrete Geometry via the Guth–Katz Polynomial Partitioning Technique , 2011, Discret. Comput. Geom..
[2] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[3] Toshinori Sakai,et al. Balanced Convex Partitions of Measures in ℝ2 , 2002, Graphs Comb..
[4] M. Gromov. Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .
[5] P. Borodin. An example of nonexistence of a steiner point in a Banach space , 2010 .
[6] V. A. Vasil. BRAID GROUP COHOMOLOGIES AND ALGORITHM COMPLEXITY , 2006 .
[7] A. Harnack,et al. Ueber die Vieltheiligkeit der ebenen algebraischen Curven , 1876 .
[8] Alexander Russell,et al. Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..
[9] I. Bárány,et al. Equipartitioning by a convex 3-fan , 2010 .
[10] A. Ivanov,et al. Geometry of minimal networks and the one-dimensional Plateau problem , 1992 .
[11] Thomas Auf der Heyde,et al. On Quantifying Chirality , 1992 .
[12] R. Adler. The Geometry of Random Fields , 2009 .
[13] B. M. Fulk. MATH , 1992 .
[14] Z. Füredi,et al. The number of triangles covering the center of an n-set , 1984 .
[15] V. Kadets. Under a suitable renorming every nonreflexive Banach space has a finite subsetwithout a Steiner point , 2013 .
[16] Adrian L. Melott,et al. Topology of the large-scale structure of the universe , 1990 .
[17] János Pach. A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..
[18] Uniqueness of Steiner minimal trees on boundaries in general position , 2006 .
[19] A. Ivanov,et al. One-dimensional Gromov minimal filling problem , 2012 .
[20] Konrad J. Swanepoel. The local Steiner problem in normed planes , 2000, Networks.
[21] B. Aronov,et al. Convex Equipartitions of volume and surface area , 2010, 1010.4611.
[22] Libor Veselý,et al. A characterization of reflexivity in the terms of the existence of generalized centers , 1993 .
[23] R. Adler,et al. The Geometry of Random Fields , 1982 .
[24] Ming-Kuei Hu,et al. Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.
[25] R. Karasev. Equipartition of several measures , 2010, 1011.4762.
[26] Pablo Soberón,et al. BALANCED CONVEX PARTITIONS OF MEASURES IN ℝ d , 2010, 1010.6191.
[27] N. Innami,et al. A comparison theorem for Steiner minimum trees in surfaces with curvature bounded below , 2013 .
[28] A. Ivanov,et al. Branching geodesics in normed spaces , 2002 .
[29] Imre Bárány,et al. A generalization of carathéodory's theorem , 1982, Discret. Math..
[30] J. Tukey,et al. Generalized “sandwich” theorems , 1942 .
[31] David Eppstein,et al. Worst-case bounds for subadditive geometric graphs , 1993, SCG '93.
[32] A. Ivanov,et al. Branching solutions to one-dimensional variational problems , 2001 .
[33] A. Buda,et al. On a measure of axiality for triangular domains. , 1991 .
[34] K. I. Oblakov. Non-existence of distinct codirected locally minimal trees on a plane , 2009 .
[35] B. Grünbaum. Measures of symmetry for convex sets , 1963 .
[36] H. Steinhaus,et al. Sur la division des ensembles de l'espace par les plans et des ensembles plans par les cercles , 1945 .
[37] A.O.Ivanov,et al. One-dimensional Gromov minimal filling , 2010, 1101.0106.
[38] Roman N. Karasev,et al. A Simpler Proof of the Boros–Füredi–Bárány–Pach–Gromov Theorem , 2010, Discret. Comput. Geom..
[39] Jirí Matousek,et al. On Gromov’s Method of Selecting Heavily Covered Points , 2011, Discret. Comput. Geom..