DNA sequencing: bench to bedside and beyond

Fifteen years elapsed between the discovery of the double helix (1953) and the first DNA sequencing (1968). Modern DNA sequencing began in 1977, with development of the chemical method of Maxam and Gilbert and the dideoxy method of Sanger, Nicklen and Coulson, and with the first complete DNA sequence (phage ϕX174), which demonstrated that sequence could give profound insights into genetic organization. Incremental improvements allowed sequencing of molecules >200 kb (human cytomegalovirus) leading to an avalanche of data that demanded computational analysis and spawned the field of bioinformatics. The US Human Genome Project spurred sequencing activity. By 1992 the first ‘sequencing factory’ was established, and others soon followed. The first complete cellular genome sequences, from bacteria, appeared in 1995 and other eubacterial, archaebacterial and eukaryotic genomes were soon sequenced. Competition between the public Human Genome Project and Celera Genomics produced working drafts of the human genome sequence, published in 2001, but refinement and analysis of the human genome sequence will continue for the foreseeable future. New ‘massively parallel’ sequencing methods are greatly increasing sequencing capacity, but further innovations are needed to achieve the ‘thousand dollar genome’ that many feel is prerequisite to personalized genomic medicine. These advances will also allow new approaches to a variety of problems in biology, evolution and the environment.

[1]  Mihai Pop,et al.  Microbiome Metagenomic Analysis of the Human Distal Gut , 2009 .

[2]  A. Caplan A life decoded: My genome — my life , 2008 .

[3]  Julian Parkhill,et al.  Single-cell genomics , 2008, Nature Reviews Microbiology.

[4]  Natalya Yutin,et al.  Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. , 2007, Environmental microbiology.

[5]  J. Marroquin The Language of God: A Scientist Presents Evidence for Belief , 2007 .

[6]  Gerard Manning,et al.  Structural and Functional Diversity of the Microbial Kinome , 2007, PLoS biology.

[7]  Benjamin J. Raphael,et al.  The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families , 2007, PLoS biology.

[8]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[9]  Elizabeth Pennisi On Your Mark. Get Set. Sequence! , 2006, Science.

[10]  R. Sinsheimer To reveal the genomes. , 2006, American journal of human genetics.

[11]  A. Halpern,et al.  A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  L. Du,et al.  Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes , 2006, Nucleic acids research.

[13]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[14]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[15]  Richard A Mathies,et al.  Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Elizabeth Pennisi Genomics. On your mark. Get set. Sequence! , 2006, Science.

[17]  Gregory Hine The Language of God: A Scientist Presents Evidence for Belief , 2006 .

[18]  M. Metzker Emerging technologies in DNA sequencing. , 2005, Genome research.

[19]  Clive Brown,et al.  Toward the $1000 human genome , 2005 .

[20]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[21]  Y. Rogers,et al.  Genomics: Massively parallel sequencing , 2005, Nature.

[22]  J. Shendure,et al.  Materials and Methods Som Text Figs. S1 and S2 Tables S1 to S4 References Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome , 2022 .

[23]  Edward M. Rubin,et al.  Metagenomics: DNA sequencing of environmental samples , 2005, Nature Reviews Genetics.

[24]  Eugene Y Chan,et al.  Advances in sequencing technology. , 2005, Mutation research.

[25]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[26]  The Amino-acid Sequence in the Phenylalanyl Chain of Insulin , 2005 .

[27]  Clive Brown,et al.  Toward the 1,000 dollars human genome. , 2005, Pharmacogenomics.

[28]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[29]  Benjamin Yang,et al.  "The genome war: how craig venter tried to capture the code of life and save the world". , 2004, Discovery medicine.

[30]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[31]  S. Bennett Solexa Ltd. , 2004, Pharmacogenomics.

[32]  D. Dressman,et al.  Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  L. Rowland The Gene Masters: How a New Breed of Scientific Entrepreneurs Raced for the Biggest Prize in Biology , 2003 .

[34]  S. Quake,et al.  Sequence information can be obtained from single DNA molecules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Rappuoli,et al.  Two years into reverse vaccinology. , 2003, Vaccine.

[36]  M. Khoury,et al.  Population screening in the age of genomic medicine. , 2003, The New England journal of medicine.

[37]  F. Blattner,et al.  Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Francis S. Collins,et al.  Genomic medicine--a primer. , 2002, The New England journal of medicine.

[39]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[40]  Theresa M. Wizemann,et al.  Use of a Whole Genome Approach To Identify Vaccine Molecules Affording Protection against Streptococcus pneumoniae Infection , 2001, Infection and Immunity.

[41]  Leena Peltonen,et al.  Dissecting Human Disease in the Postgenomic Era , 2001, Science.

[42]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[43]  V A McKusick,et al.  Genomics and medicine. Dissecting human disease in the postgenomic era. , 2001, Science.

[44]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[45]  D. Deamer,et al.  Nanopores and nucleic acids: prospects for ultrarapid sequencing. , 2000, Trends in biotechnology.

[46]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[47]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[48]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[49]  Kathryn F. Beal,et al.  The Staden package, 1998. , 2000, Methods in molecular biology.

[50]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[51]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[52]  A. Rich,et al.  The rise of single-molecule DNA biochemistry. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[54]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[55]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[56]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[57]  M. Ronaghi,et al.  Real-time DNA sequencing using detection of pyrophosphate release. , 1996, Analytical biochemistry.

[58]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[59]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[60]  R. Fleischmann,et al.  Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. , 1995, Nature.

[61]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[62]  J. Roach,et al.  Pairwise end sequencing: a unified approach to genomic mapping and sequencing. , 1995, Genomics.

[63]  K H Buetow,et al.  A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). , 1994, Science.

[64]  J. Craig Venter,et al.  A model for high-throughput automated DNA sequencing and analysis core facilities , 1994, Nature.

[65]  M. Uhlén,et al.  Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. , 1993, Analytical biochemistry.

[66]  R. Staden,et al.  The C. elegans genome sequencing project: a beginning , 1992, Nature.

[67]  E. Delong,et al.  Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing , 1991, Journal of bacteriology.

[68]  A. Kerlavage,et al.  Complementary DNA sequencing: expressed sequence tags and human genome project , 1991, Science.

[69]  C. Hutchison,et al.  The DNA sequence of the human cytomegalovirus genome. , 1991, DNA sequence : the journal of DNA sequencing and mapping.

[70]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[71]  H. Erfle,et al.  Automated DNA sequencing of the human HPRT locus. , 1990, Genomics.

[72]  E. D. Hyman A new method of sequencing DNA. , 1988, Analytical biochemistry.

[73]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[74]  A. Kerlavage,et al.  Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[76]  Lloyd M. Smith,et al.  Fluorescence detection in automated DNA sequence analysis , 1986, Nature.

[77]  James W. Fickett,et al.  The GenBank genetic sequence databank , 1986, Nucleic Acids Res..

[78]  P. L. Deininger,et al.  DNA sequence and expression of the B95-8 Epstein—Barr virus genome , 1984, Nature.

[79]  F. Blattner Biological frontiers. , 1983, Science.

[80]  F. Sanger,et al.  Nucleotide sequence of bacteriophage lambda DNA. , 1982, Journal of molecular biology.

[81]  M Lynch On your mark. , 1982, The Lamp.

[82]  M. O. Dayhoff,et al.  Nucleic acid sequence database IV. , 1982, DNA.

[83]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[84]  M. O. Dayhoff,et al.  Nucleic acid sequence database. , 1981, DNA.

[85]  J. Messing,et al.  A versatile primer for DNA sequencing in the M13mp2 cloning system. , 1980, Gene.

[86]  Bart Barrell,et al.  The nucleotide sequence of bacteriophage φX174 , 1978 .

[87]  R. Contreras,et al.  Complete nucleotide sequence of SV40 DNA , 1978, Nature.

[88]  J. Messing,et al.  Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites , 1978, Nature.

[89]  T Friedmann,et al.  The nucleotide sequence of bacteriophage phiX174. , 1978, Journal of molecular biology.

[90]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[91]  R. Staden Sequence data handling by computer. , 1977, Nucleic acids research.

[92]  D McCallum,et al.  Computer processing of DNA sequence data. , 1977, Journal of molecular biology.

[93]  B. Müller-Hill,et al.  Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[94]  F. Sanger,et al.  DNA sequence at the C termini of the overlapping genes A and B in bacteriophage φX174 , 1977, Nature.

[95]  F. Sanger,et al.  Nucleotide sequence of bacteriophage φX174 DNA , 1977, Nature.

[96]  F. Sanger,et al.  Nucleotide sequence of bacteriophage phi X174 DNA. , 1977, Nature.

[97]  C. A. Hutchison,et al.  Overlapping genes in bacteriophage φX174 , 1976, Nature.

[98]  B. Barrell,et al.  Overlapping genes in bacteriophage phiX174. , 1976, Nature.

[99]  F. Sanger The Croonian Lecture, 1975 Nucleotide sequences in DNA , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[100]  F. Sanger,et al.  A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. , 1975, Journal of molecular biology.

[101]  Tom Maniatis,et al.  Sequence of a represser-binding site in the DNA of bacteriophage λ , 1974, Nature.

[102]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[103]  M Ptashne,et al.  Sequence of a repressor-binding site in the DNA of bacteriophage lamda. , 1974, Nature.

[104]  W. Gilbert,et al.  The nucleotide sequence of the lac operator. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. Wu,et al.  Nucleotide sequence analysis of DNA. IX. Use of oligonucleotides of defined sequence as primers in DNA sequence analysis. , 1972, Biochemical and biophysical research communications.

[106]  C. Hutchison,et al.  Specific Fragments of φX174 Deoxyribonucleic Acid Produced by a Restriction Enzyme from Haemophilus aegyptius, Endonuclease Z , 1972, Journal of virology.

[107]  R. Wu Nucleotide sequence analysis of DNA. , 1972, Nature: New biology.

[108]  R. Wu,et al.  Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. , 1971, Journal of molecular biology.

[109]  Hamilton O. Smith,et al.  A restriction enzyme from Hemophilus influenzae: II. Base sequence of the recognition site , 1970 .

[110]  H. Smith,et al.  A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. , 1970, Journal of molecular biology.

[111]  A. D. Kaiser,et al.  Structure and function of DNA cohesive ends. , 1968, Cold Spring Harbor symposia on quantitative biology.

[112]  A. D. Kaiser,et al.  Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. , 1968, Journal of molecular biology.

[113]  D. Hogness,et al.  The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage λdg , 1960 .

[114]  D. Hogness,et al.  The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. , 1960, Journal of molecular biology.

[115]  Sinsheimer Rl A single-stranded DNA from bacteriophage phi X174. , 1959 .

[116]  F. Sanger Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. , 1959, Science.

[117]  ROY MARKHAM,et al.  Structure of Ribonucleic Acid , 1951, Nature.

[118]  F. Sanger,et al.  The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. , 1951, The Biochemical journal.

[119]  F. Sanger,et al.  The terminal peptides of insulin. , 1949, The Biochemical journal.

[120]  William Hyde Wollaston,et al.  I. The Croonian Lecture , 1810, Philosophical Transactions of the Royal Society of London.