StreamKM++: A clustering algorithm for data streams
暂无分享,去创建一个
Christian Sohler | Christiane Lammersen | Marcus Märtens | Marcel R. Ackermann | Christoph Raupach | Kamil Swierkot | C. Sohler | Marcus Märtens | Christoph Raupach | Kamil Swierkot | Christiane Lammersen
[1] E. Forgy,et al. Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .
[2] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[3] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[4] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[5] Shokri Z. Selim,et al. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[7] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[8] Sudipto Guha,et al. Clustering Data Streams , 2000, FOCS.
[9] Jirí Matousek,et al. On Approximate Geometric k -Clustering , 2000, Discret. Comput. Geom..
[10] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[11] David M. Mount,et al. A local search approximation algorithm for k-means clustering , 2002, SCG '02.
[12] Sudipto Guha,et al. Streaming-data algorithms for high-quality clustering , 2002, Proceedings 18th International Conference on Data Engineering.
[13] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[14] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[15] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[16] Tian Zhang,et al. BIRCH: A New Data Clustering Algorithm and Its Applications , 1997, Data Mining and Knowledge Discovery.
[17] Christian Sohler,et al. Coresets in dynamic geometric data streams , 2005, STOC '05.
[18] Ke Chen,et al. On k-Median clustering in high dimensions , 2006, SODA '06.
[19] A. Asuncion,et al. UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .
[20] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[21] Dan Feldman,et al. A PTAS for k-means clustering based on weak coresets , 2007, SCG '07.
[22] S. Dasgupta. The hardness of k-means clustering , 2008 .
[23] Bodo Manthey,et al. k-Means Has Polynomial Smoothed Complexity , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[24] Marcel R. Ackermann,et al. StreamKM + + : A New Clustering Algorithm for Data Streams , 2009 .
[25] Ankit Aggarwal,et al. Adaptive Sampling for k-Means Clustering , 2009, APPROX-RANDOM.
[26] Andrea Vattani,et al. k-means Requires Exponentially Many Iterations Even in the Plane , 2008, SCG '09.
[27] Nir Ailon,et al. Streaming k-means approximation , 2009, NIPS.
[28] Pierre Hansen,et al. NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.
[29] Ke Chen,et al. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications , 2009, SIAM J. Comput..
[30] Amit Kumar,et al. Clustering with Spectral Norm and the k-Means Algorithm , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.