The Unitarity Conditions for the Square of White Noise

The renormalized stochastic differentials of the square of white noise are defined in Boson–Fock space representation. The Ito multiplication table of these differentials and the module form of the unitarity conditions are obtained.

[1]  L. Accardi,et al.  Stochastic calculus on local algebras , 1985 .

[2]  N. Obata COHERENT STATE REPRESENTATION AND UNITARITY CONDITION IN WHITE NOISE CALCULUS , 2001 .

[3]  Luigi Accardi,et al.  THE ITÔ TABLE OF THE SQUARE OF WHITE NOISE , 2001 .

[4]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[5]  L. Accardi Meixner classes and the square of white noise , 2003 .

[6]  Michael Skeide Hilbert Modules in Quantum Electro Dynamics and Quantum Probability , 1998 .

[7]  A. Chebotarev Lecture on Quantum Probability , 2000 .

[8]  Luigi Accardi,et al.  Square of white noise unitary evolutions on Boson Fock space , 2004 .

[9]  Debashish Goswami,et al.  Hilbert Modules and Stochastic Dilation of a Quantum Dynamical Semigroup on a von Neumann Algebra , 1999 .

[10]  M. Schürmann White Noise on Bialgebras , 1993 .

[11]  George Papanicolaou On stochastic differential equations and applications , 1969 .

[12]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[13]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[14]  Michael Skeide Quantum Stochastic Calculus on Full Fock Modules , 2000 .

[15]  The Ito algebra of quantum Gaussian fields , 1989 .

[16]  Luigi Accardi,et al.  The semi-martingale property of the square of white noise integrators , 2002 .

[17]  Andreas Boukas An example of a quantum exponential process , 1991 .

[18]  W. L. Paschke Inner Product Modules Over B ∗ -Algebras , 1973 .

[19]  A Note on Free Stochastic Calculus on Hilbert Modules and Its Application , 1996 .

[20]  P. Vallois,et al.  Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .

[21]  BEREZIN QUANTIZATION OF THE SCHRÖDINGER ALGEBRA , 2000, math-ph/0009010.

[22]  Andreas Boukas,et al.  STOCHASTIC CALCULUS ON THE FINITE-DIFFERENCE FOCK SPACE , 1991 .

[23]  L. Accardi,et al.  Unitarity conditions for stochastic differential equations driven by nonlinear quantum noise , 2002 .

[24]  Luigi Accardi,et al.  ON THE UNITARITY OF STOCHASTIC EVOLUTIONS DRIVEN BY THE SQUARE OF WHITE NOISE , 2001 .

[25]  L. Accardi,et al.  Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras , 2000 .

[26]  Luigi Accardi,et al.  On the relation of the square of white noise and the finite difference algebra , 2000 .

[27]  Igor Volovich,et al.  Non-Linear Extensions of Classical and Quantum Stochastic Calculus and Essentially Infinite Dimensional Analysis , 1998 .

[28]  Luigi Accardi,et al.  Unitarity conditions for the renormalized square of white noise , 2000 .

[29]  Philip Feinsilver Discrete analogues of the Heisenberg-Weyl algebra , 1987 .

[30]  V. Belavkin On Quantum Itô Algebras and Their Decompositions , 1998, math-ph/0512071.

[31]  Luigi Accardi,et al.  Renormalized Squares of White Noise¶and Other Non-Gaussian Noises as Lévy Processes¶on Real Lie Algebras , 2002 .

[32]  Luigi Accardi,et al.  A Representation Free Quantum Stochastic Calculus , 1992 .

[33]  Igor Volovich,et al.  Quantum Theory and Its Stochastic Limit , 2002 .

[34]  Roland Speicher,et al.  Combinatorial Theory of the Free Product With Amalgamation and Operator-Valued Free Probability Theory , 1998 .

[35]  Piotr Śniady Quadratic Bosonic and Free White Noises , 2000, math-ph/0303048.