The Unitarity Conditions for the Square of White Noise
暂无分享,去创建一个
[1] L. Accardi,et al. Stochastic calculus on local algebras , 1985 .
[2] N. Obata. COHERENT STATE REPRESENTATION AND UNITARITY CONDITION IN WHITE NOISE CALCULUS , 2001 .
[3] Luigi Accardi,et al. THE ITÔ TABLE OF THE SQUARE OF WHITE NOISE , 2001 .
[4] Robin L. Hudson,et al. Quantum Ito's formula and stochastic evolutions , 1984 .
[5] L. Accardi. Meixner classes and the square of white noise , 2003 .
[6] Michael Skeide. Hilbert Modules in Quantum Electro Dynamics and Quantum Probability , 1998 .
[7] A. Chebotarev. Lecture on Quantum Probability , 2000 .
[8] Luigi Accardi,et al. Square of white noise unitary evolutions on Boson Fock space , 2004 .
[9] Debashish Goswami,et al. Hilbert Modules and Stochastic Dilation of a Quantum Dynamical Semigroup on a von Neumann Algebra , 1999 .
[10] M. Schürmann. White Noise on Bialgebras , 1993 .
[11] George Papanicolaou. On stochastic differential equations and applications , 1969 .
[12] Hui-Hsiung Kuo,et al. White noise distribution theory , 1996 .
[13] K. Parthasarathy. An Introduction to Quantum Stochastic Calculus , 1992 .
[14] Michael Skeide. Quantum Stochastic Calculus on Full Fock Modules , 2000 .
[15] The Ito algebra of quantum Gaussian fields , 1989 .
[16] Luigi Accardi,et al. The semi-martingale property of the square of white noise integrators , 2002 .
[17] Andreas Boukas. An example of a quantum exponential process , 1991 .
[18] W. L. Paschke. Inner Product Modules Over B ∗ -Algebras , 1973 .
[19] A Note on Free Stochastic Calculus on Hilbert Modules and Its Application , 1996 .
[20] P. Vallois,et al. Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .
[21] BEREZIN QUANTIZATION OF THE SCHRÖDINGER ALGEBRA , 2000, math-ph/0009010.
[22] Andreas Boukas,et al. STOCHASTIC CALCULUS ON THE FINITE-DIFFERENCE FOCK SPACE , 1991 .
[23] L. Accardi,et al. Unitarity conditions for stochastic differential equations driven by nonlinear quantum noise , 2002 .
[24] Luigi Accardi,et al. ON THE UNITARITY OF STOCHASTIC EVOLUTIONS DRIVEN BY THE SQUARE OF WHITE NOISE , 2001 .
[25] L. Accardi,et al. Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras , 2000 .
[26] Luigi Accardi,et al. On the relation of the square of white noise and the finite difference algebra , 2000 .
[27] Igor Volovich,et al. Non-Linear Extensions of Classical and Quantum Stochastic Calculus and Essentially Infinite Dimensional Analysis , 1998 .
[28] Luigi Accardi,et al. Unitarity conditions for the renormalized square of white noise , 2000 .
[29] Philip Feinsilver. Discrete analogues of the Heisenberg-Weyl algebra , 1987 .
[30] V. Belavkin. On Quantum Itô Algebras and Their Decompositions , 1998, math-ph/0512071.
[31] Luigi Accardi,et al. Renormalized Squares of White Noise¶and Other Non-Gaussian Noises as Lévy Processes¶on Real Lie Algebras , 2002 .
[32] Luigi Accardi,et al. A Representation Free Quantum Stochastic Calculus , 1992 .
[33] Igor Volovich,et al. Quantum Theory and Its Stochastic Limit , 2002 .
[34] Roland Speicher,et al. Combinatorial Theory of the Free Product With Amalgamation and Operator-Valued Free Probability Theory , 1998 .
[35] Piotr Śniady. Quadratic Bosonic and Free White Noises , 2000, math-ph/0303048.