Microfluidic device for continuous magnetophoretic separation of red blood cells

This paper presents a microfluidic device for magnetophoretic separation of red blood cells from blood under continuous flow. The separation method consists of continuous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom “dots” of ferromagnetic layer. By applying a magnetic field perpendicular on the flowing direction, the ferromagnetic “dots” generate a gradient of magnetic field which amplifies the magnetic force. As a result, the red blood cells are captured on the bottom of the microfluidic channel while the rest of the blood is collected at the outlet. Experimental results show that an average of 95% of red blood cells is trapped in the device.

[1]  Ciprian Iliescu,et al.  A 3‐D dielectrophoretic filter chip , 2007, Electrophoresis.

[2]  A. B. Frazier,et al.  Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. , 2006, Lab on a chip.

[3]  K. Najafi,et al.  Characterization of low-temperature wafer bonding using thin-film parylene , 2005, Journal of Microelectromechanical Systems.

[4]  J. Svoboda,et al.  Separation of red blood cells by magnetic means , 2000 .

[5]  A. J. Freeman,et al.  Journal of Magnetism and Magnetic Materials. Volumes 198-199, 1 June 1999, , 1999 .

[6]  Mehmet Toner,et al.  Blood-on-a-chip. , 2005, Annual review of biomedical engineering.

[7]  Guolin Xu,et al.  A Dielectrophoretic Chip With a 3-D Electric Field Gradient , 2006, Journal of Microelectromechanical Systems.

[8]  Ciprian Iliescu,et al.  Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy , 2007 .

[9]  C. H. Kua,et al.  Dynamic cell fractionation and transportation using moving dielectrophoresis. , 2007, Analytical chemistry.

[10]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[11]  Chen Yu,et al.  Microcoils for transport of magnetic beads , 2006 .

[12]  A. J. Pang,et al.  Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation , 2007 .

[13]  Ciprian Iliescu,et al.  Defect-free wet etching through pyrex glass using Cr/Au mask , 2006 .

[14]  Ciprian Iliescu,et al.  Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution , 2005 .

[15]  Robert H. Austin,et al.  Microfluidic high gradient magnetic cell separation , 2006 .

[16]  J. Miao,et al.  On the wet etching of Pyrex glass , 2008 .

[17]  R. Kostiainen,et al.  Glass microfabricated nebulizer chip for mass spectrometry. , 2007, Lab on a chip.

[18]  George M. Whitesides,et al.  Fabrication of magnetic microfiltration systems using soft lithography , 2002 .

[19]  P. Gascoyne,et al.  Particle separation by dielectrophoresis , 2002, Electrophoresis.

[20]  Maciej Zborowski,et al.  Red blood cell magnetophoresis. , 2003, Biophysical journal.

[21]  H. Morgan,et al.  Microdevices for dielectrophoretic flow - through cell separation , 2003, IEEE Engineering in Medicine and Biology Magazine.

[22]  Ciprian Iliescu,et al.  Electrical control of loaded biomimetic femtoliter vesicles in microfluidic system , 2007 .

[23]  Noo Li Jeon,et al.  Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. , 2007, Lab on a chip.

[24]  F. Tay,et al.  Strategies in deep wet etching of Pyrex glass , 2007 .

[25]  Michael P Hughes,et al.  Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems , 2002, Electrophoresis.

[26]  F. Tay,et al.  Sequential Field-Flow Cell Separation Method in a Dielectrophoretic Chip With 3-D Electrodes , 2007, Journal of Microelectromechanical Systems.

[27]  S. Lowen The Biophysical Journal , 1960, Nature.

[28]  A. Bruno Frazier,et al.  Continuous magnetophoretic separation of blood cells in microdevice format , 2004 .

[29]  Q. Ramadan,et al.  Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration , 2006, Journal of Microelectromechanical Systems.