Electronic band structure modeling in strained Si-nanowires: Two band k · p versus tight binding

The subband structure of silicon nanowires has gained much interest recently. Nanowires with diameters below 10 nm are predicted to have a significantly altered subband structure compared with bulk silicon. The effective mass approximation fails to describe these alterings correctly, and so far the semiempirical tight binding method and first principles calculations were used to investigate them. In this paper we present an approach based on a two band k · p description of the conduction band minima. The method excels in simplicity of modeling and versatility including the ability to model strain effects on the subband structure.