Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory
暂无分享,去创建一个
[1] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[2] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[3] Hrushikesh Narhar Mhaskar,et al. Extremal problems for polynomials with exponential weights , 1984 .
[4] Percy Deift. Four Lectures on Random Matrix Theory , 2003 .
[5] Steven B. Damelin,et al. The support of the equilibrium measure in the presence of a monomial external field on [-1,1] , 1999 .
[6] Marc Van Barel,et al. Convergence of the Isometric Arnoldi Process , 2005, SIAM J. Matrix Anal. Appl..
[7] E. Rakhmanov,et al. Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable , 1996 .
[8] G. Golub,et al. Eigenvalue computation in the 20th century , 2000 .
[9] Hrushikesh Narhar Mhaskar,et al. Weighted analogues of capacity, transfinite diameter, and Chebyshev constant , 1992 .
[10] I. Goldsheid,et al. Eigenvalue curves of asymmetric tridiagonal random matrices , 2000, math-ph/0011003.
[11] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[12] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.
[13] O. Nevanlinna. Convergence of Iterations for Linear Equations , 1993 .
[14] Jörg Liesen,et al. The Worst-Case GMRES for Normal Matrices , 2004 .
[15] Thomas A. Manteuffel,et al. Minimal Residual Method Stronger than Polynomial Preconditioning , 1996, SIAM J. Matrix Anal. Appl..
[16] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[17] Arno B. J. Kuijlaars,et al. On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .
[18] T. Guhr,et al. RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.
[19] Stephen J. Gardiner,et al. Classical Potential Theory , 2000 .
[20] Kim-Chuan Toh,et al. GMRES vs. Ideal GMRES , 1997, SIAM J. Matrix Anal. Appl..
[21] Vilmos Totik,et al. Weighted Approximation with Varying Weight , 1994 .
[22] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[23] Edward B. Saff,et al. Jentzsch-Szegö Type Theorems for the Zeros of Best Approximants , 1988 .
[24] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[25] Arno B. J. Kuijlaars,et al. Zero distributions for discrete orthogonal polynomials , 1998 .
[26] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[27] Vilmos Totik,et al. General Orthogonal Polynomials , 1992 .
[28] D. Calvetti,et al. AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .
[29] M. Barel,et al. A numerical solution of the constrained energy problem , 2006 .
[30] STEFANO SERRA CAPIZZANO,et al. Locally X Matrices, Spectral Distributions, Preconditioning, and Applications , 2000, SIAM J. Matrix Anal. Appl..
[31] Bernhard Beckermann,et al. A note on the convergence of Ritz values for sequences of matrices , 2000 .
[32] Tobin A. Driscoll,et al. From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..
[33] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[34] S. Capizzano. Spectral behavior of matrix sequences and discretized boundary value problems , 2001 .
[35] H. V. D. Vorst,et al. The convergence behavior of ritz values in the presence of close eigenvalues , 1987 .
[36] Boris A. Khoruzhenko,et al. Eigenvalue Curves of Asymmetric Tridiagonal Matrices , 2000 .
[37] Edward B. Saff,et al. Constrained energy problems with applications to orthogonal polynomials of a discrete variable , 1997 .
[38] Arno B. J. Kuijlaars,et al. Superlinear CG convergence for special right-hand sides , 2002 .
[39] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[40] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[41] Arno B. J. Kuijlaars,et al. Extremal Polynomials on Discrete Sets , 1999 .
[42] R. Langer. Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .
[43] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[44] E. Rakhmanov,et al. ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE REAL AXIS , 1984 .
[45] P. D. Miller,et al. Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles , 2002 .
[46] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[47] Edward B. Saff,et al. A Problem in Potential Theory and Zero Asymptotics of Krawtchouk Polynomials , 2000 .
[48] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[49] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[50] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[51] Hrushikesh Narhar Mhaskar,et al. Where does the sup norm of a weighted polynomial live? , 1985 .
[52] Arno B. J. Kuijlaars,et al. Which Eigenvalues Are Found by the Lanczos Method? , 2000, SIAM J. Matrix Anal. Appl..
[53] S. Kaniel. Estimates for Some Computational Techniques - in Linear Algebra , 1966 .
[54] Antonia Maria Tulino,et al. Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.
[55] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[56] E. Rakhmanov,et al. EQUILIBRIUM MEASURE AND THE DISTRIBUTION OF ZEROS OF EXTREMAL POLYNOMIALS , 1986 .
[57] John Rossi,et al. Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..
[58] A. Sluis,et al. Further results on the convergence behavior of conjugate-gradients and Ritz values , 1996 .
[59] Thomas Ransford,et al. Potential Theory in the Complex Plane: Bibliography , 1995 .
[60] G. Pólya,et al. Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .
[61] O. Axelsson. Iterative solution methods , 1995 .
[62] Percy Deift,et al. A continuum limit of the Toda lattice , 1998 .
[63] P. J. Forrester,et al. Developments in random matrix theory , 2003, cond-mat/0303207.
[64] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[65] W. Van Assche,et al. Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice , 2001 .
[66] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[67] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[68] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[69] M. Brelot. Classical potential theory and its probabilistic counterpart , 1986 .
[70] Craig A. Tracy,et al. Universality of the distribution functions of random matrix theory , 1999 .
[71] K. Johansson. Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.
[72] Arno B. J. Kuijlaars,et al. On the finite-gap ansatz in the continuum limit of the Toda lattice , 2000 .
[73] L. Trefethen,et al. Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.
[74] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[75] I.Ya. Goldsheid,et al. Regular Spacings of Complex Eigenvalues in the One-Dimensional Non-Hermitian Anderson Model , 2003 .
[76] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[77] E. Rakhmanov,et al. Families of equilibrium measures in an external field on the real axis , 1999 .
[78] Gene H. Golub,et al. Matrix computations , 1983 .