First-principles calculation of Coulomb interaction parameters for lanthanides: Role of self-consistence and screening processes

[1]  M. Troyer,et al.  Magnetic susceptibility of cerium: An LDA+DMFT study , 2011, 1106.3470.

[2]  Christoph Friedrich,et al.  Effective Coulomb interaction in transition metals from constrained random-phase approximation , 2011, 1103.5593.

[3]  F. Aryasetiawan,et al.  Screened Coulomb interaction in the maximally localized Wannier basis , 2007, 0710.4013.

[4]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[5]  M. Torrent,et al.  DFT+U study of self-trapping, trapping, and mobility of oxygen-type hole polarons in barium stannate , 2017 .

[6]  M. Katsnelson,et al.  Standard model of the rare earths analyzed from the Hubbard I approximation , 2015, 1512.02848.

[7]  M. Gutzwiller Effect of Correlation on the Ferromagnetism of Transition Metals , 1963 .

[8]  Bernard Amadon,et al.  Structural, thermodynamic, and electronic properties of plutonium oxides from first principles , 2008 .

[9]  Jordan Bieder,et al.  Thermodynamics of the α-γ transition in cerium from first principles , 2013, 1305.7481.

[10]  Alexis Gerossier,et al.  Comparative analysis of models for the α − γ phase transition in cerium: A DFT+DMFT study using Wannier orbitals , 2015 .

[11]  Silke Biermann,et al.  Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions. , 2015, Physical review letters.

[12]  G. Kresse,et al.  Comparing quasiparticle GW+DMFT and LDA+DMFT for the test bed material SrVO 3 , 2012, 1211.1324.

[13]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[14]  McMahan,et al.  Calculated effective Hamiltonian for La2CuO4 and solution in the impurity Anderson approximation. , 1988, Physical review. B, Condensed matter.

[15]  K. Ho,et al.  Phase Diagram and Electronic Structure of Praseodymium and Plutonium , 2015 .

[16]  Frederick E. Pinkerton,et al.  Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited) , 1984 .

[17]  Wenqing Zhang,et al.  Screened Coulomb interaction of localized electrons in solids from first principles , 2012 .

[18]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[19]  Markus Aichhorn,et al.  Reduced effective spin-orbital degeneracy and spin-orbital ordering in paramagnetic transition-metal oxides: Sr2IrO4 versus Sr2RhO4. , 2011, Physical review letters.

[20]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[21]  John P. Perdew,et al.  Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works , 1980 .

[22]  Walter R. L. Lambrecht,et al.  Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry , 2007 .

[23]  R. Sakuma,et al.  Effective Coulomb interactions in solids under pressure , 2009, 0906.4398.

[24]  N. Nereson,et al.  MAGNETIC STRUCTURE OF EUROPIUM , 1964 .

[25]  Ferdi Aryasetiawan,et al.  Electronic structure of SrVO3 within GW plus DMFT , 2013 .

[26]  Jansen,et al.  Total-energy local-density studies of the alpha - gamma phase transition in Ce. , 1986, Physical review. B, Condensed matter.

[27]  Hong Jiang,et al.  Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels, and frequency dependence , 2016, 1605.08918.

[28]  Graeme W Watson,et al.  Occupation matrix control of d- and f-electron localisations using DFT + U. , 2014, Physical chemistry chemical physics : PCCP.

[29]  F. Aryasetiawan,et al.  Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme , 2010, 1004.1321.

[30]  Volume-collapse transitions in the rare earth metals , 1998, cond-mat/9805064.

[31]  袁勋,et al.  Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides , 2012 .

[32]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[33]  W. Pickett,et al.  Ground and metastable states in γ-Ce from correlated band theory , 2001 .

[34]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[35]  S. Blügel,et al.  NiS - An unusual self-doped, nearly compensated antiferromagnetic metal , 2013, Scientific Reports.

[36]  Marc Torrent,et al.  Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format , 2013, Comput. Phys. Commun..

[37]  Bernard Amadon,et al.  First-principles DFT+DMFT calculations of structural properties of actinides: Role of Hund's exchange, spin-orbit coupling, and crystal structure , 2016 .

[38]  O. Jepsen,et al.  Calculations of Hubbard U from first-principles , 2006 .

[39]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[40]  REALISTIC MODELING OF STRONGLY CORRELATED ELECTRON SYSTEMS: AN INTRODUCTION TO THE LDA+DMFT APPROACH , 2000, cond-mat/0010395.

[41]  Takashi Miyake,et al.  Ab initio procedure for constructing effective models of correlated materials with entangled band structure , 2009, 0906.1344.

[42]  Thomas Applencourt,et al.  Screened Coulomb interaction calculations: cRPA implementation and applications to dynamical screening and self-consistency in uranium dioxide and cerium , 2014, 1403.5386.

[43]  M. Casula,et al.  Combined GW and dynamical mean-field theory: Dynamical screening effects in transition metal oxides , 2012, 1210.6580.

[44]  Antoine Georges,et al.  Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals , 2008, 0801.4353.

[45]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[46]  Silke Biermann,et al.  HubbardUand Hund exchangeJin transition metal oxides: Screening versus localization trends from constrained random phase approximation , 2012, 1206.3533.

[47]  F. Jollet,et al.  γandβcerium:LDA+Ucalculations of ground-state parameters , 2008 .

[48]  A Georges,et al.  First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. , 2003, Physical review letters.

[49]  F. Aryasetiawan,et al.  Realistic many-body models for manganese monoxide under pressure , 2010, 1006.0565.

[50]  Antoine Georges,et al.  The alpha-gamma transition of cerium is entropy driven. , 2006, Physical review letters.

[51]  O. Gunnarsson,et al.  Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. , 1989, Physical review. B, Condensed matter.

[52]  Svane Electronic structure of cerium in the self-interaction corrected local spin density approximation. , 1994, Physical review letters.

[53]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[54]  R. E. Watson,et al.  Single-Electron Energies, Many-Electron Effects, and the Renormalized-Atom Scheme as Applied to Rare-Earth Metals , 1972 .

[55]  S. Panda,et al.  Pressure dependence of dynamically screened Coulomb interactions in NiO: Effective Hubbard, Hund, intershell, and intersite components , 2016, 1612.07571.

[56]  Ferdi Aryasetiawan,et al.  First-principles calculations of dynamical screened interactions for the transition metal oxides MO (M = Mn, Fe, Co, Ni) , 2013 .

[57]  Ferdi Aryasetiawan,et al.  Ab initio calculations of the Hubbard U for the early lanthanides using the constrained random-phase approximation , 2013 .

[58]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[59]  Yusuke Nomura,et al.  Effective on-site interaction for dynamical mean-field theory , 2012, 1205.2836.

[60]  G. Kotliar,et al.  Optical spectroscopy and photoemission of α- and γ-cerium from LDA+DMFT , 2005 .

[61]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.