Urea thermolysis studied under flow reactor conditions using DSC and FT-IR

[1]  G. Herzberg,et al.  Infra-red spectrum and structure of the HNCO molecule , 1950 .

[2]  H. Langer,et al.  Thermal reactions by automated mass spectrometric thermal analysis , 1973 .

[3]  Luigi Stradella,et al.  A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA , 1993 .

[4]  J. Lédé,et al.  Kinetics of isocyanuric acid pyrolysis , 1994 .

[5]  R. Bilbao,et al.  Interactions between Nitric Oxide and Urea under Flow Reactor Conditions , 1998 .

[6]  J. Colson,et al.  尿素の熱分解(パイオリシス)反応の研究及びシアヌル酸製造に対する重要性 , 1999 .

[7]  Alexander Wokaun,et al.  Hydrolysis of Isocyanic Acid on SCR Catalysts , 2000 .

[8]  M. Elsener,et al.  Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines , 2000 .

[9]  B. Kasemo,et al.  Photo-Assisted Processes for Improved Catalytic Activity and Selectivity of Environmentally Harmful Emissions , 2001 .

[10]  M. Elsener,et al.  Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures , 2001 .

[11]  Martin Elsener,et al.  Recent Advances in the Development of Urea-SCR for Automotive Applications , 2001 .

[12]  E. Gulari,et al.  NOx reduction by urea under lean conditions over single step sol–gel Pt/alumina catalyst , 2002 .

[13]  V. Alfredsson,et al.  Macroscopic alignment of silver nanoparticles in reverse hexagonal liquid crystalline templates , 2002 .

[14]  Alexander Wokaun,et al.  Side Reactions in the Selective Catalytic Reduction of NOx with Various NO2 Fractions , 2002 .

[15]  M. Koebel,et al.  Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects , 2003 .

[16]  Howard L. Fang,et al.  Urea thermolysis and NOx reduction with and without SCR catalysts , 2003 .

[17]  H. Grönbeck,et al.  CO-Induced Modification of the Metal/MgO(100) Interaction , 2003 .

[18]  J. Colson,et al.  Thermal decomposition (pyrolysis) of urea in an open reaction vessel , 2004 .

[19]  H. Fredriksson,et al.  Nanostructured platinum-on-carbon model electrocatalysts prepared by colloidal lithography , 2004 .

[20]  Ji-Soo Ha,et al.  Numerical Prediction on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System , 2004 .

[21]  Young Sun Mok,et al.  Decomposition of Urea into NH3 for the SCR Process , 2004 .

[22]  J. Storey,et al.  Low Temperature Urea Decomposition and SCR Performance , 2005 .

[23]  Olaf Deutschmann,et al.  Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction , 2006 .

[24]  K. Holmberg,et al.  A carbon–carbon coupling reaction catalyzed by a water soluble rhodium catalyst entrapped in mesoporous silica , 2007 .

[25]  O. Deutschmann,et al.  Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems , 2007 .

[26]  Louise Olsson,et al.  A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5 , 2008 .

[27]  B. Kasemo,et al.  Nanostructured, Glassy-Carbon-Supported Pt/GC Electrodes: The Presence of Secondary Pt Nanostructures and How to Avoid Them , 2008 .

[28]  R. Schomäcker,et al.  Reactions in Organised Surfactant Systems , 2009 .

[29]  K. Holmberg,et al.  Use of Self-Assembled Surfactants for Nanomaterials Synthesis , 2009 .