Admissible regions for rational cubic spirals matching G2 Hermite data

This paper finds reachable regions for a single segment of parametric rational cubic Bezier spiral matching G^2 Hermite data. First we derive spiral conditions for rational cubics and then we use a free parameter to find the admissible region for a spiral segment with respect to the curvatures at its endpoints under the fixed positional and tangential end conditions. Spirals are curves of constant sign monotone curvature and therefore have the advantage that the minimum and maximum curvatures are at their endpoints only.

[1]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[2]  M. K. Kerimov,et al.  Applied and computational complex analysis. Vol. 1. Power series, integration, conformal mapping, location of zeros: Henrici P. xv + 682 pp., John Wiley and Sons, Inc., New York — London, 1974☆ , 1977 .

[3]  Wolfgang Böhm,et al.  Geometric concepts for geometric design , 1993 .

[4]  Zulfiqar Habib,et al.  Transition between concentric or tangent circles with a single segment of G2 PH quintic curve , 2008, Comput. Aided Geom. Des..

[5]  Dereck S. Meek,et al.  A smooth, obstacle-avoiding curve , 2006, Comput. Graph..

[6]  A. Robin Forrest,et al.  Curves and surfaces for computer-aided design , 1968 .

[7]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[8]  G. Farin NURB curves and surfaces , 1994 .

[9]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[10]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[11]  D. Walton,et al.  Curvature extrema of planar parametric polynomial cubic curves , 2001 .

[12]  Bruce R. Piper,et al.  Rational cubic spirals , 2008, Comput. Aided Des..

[13]  Jing-Sin Liu,et al.  Practical and flexible path planning for car-like mobile robot using maximal-curvature cubic spiral , 2005, Robotics Auton. Syst..

[14]  Muhammad Sarfraz,et al.  Curve Fitting for Large Data Using Rational Cubic Splines , 2003, International Journal of Computers and Their Applications.

[15]  Zulfiqar Habib,et al.  Fair cubic transition between two circles with one circle inside or tangent to the other , 2009, Numerical Algorithms.

[16]  Dereck S. Meek,et al.  G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments , 2007, Comput. Aided Geom. Des..

[17]  M. Sarfraz Geometric Modeling: Techniques, Applications, Systems and Tools , 2004, Springer Netherlands.

[18]  Zulfiqar Habib,et al.  G 2 Pythagorean hodograph quintic transition between two circles , 2003 .

[19]  D. B. Davis,et al.  The Boeing Co. , 1993 .

[20]  Zulfiqar Habib,et al.  Rational cubic spline interpolation with shape control , 2005, Comput. Graph..

[21]  Martin Held,et al.  A smooth spiral tool path for high speed machining of 2D pockets , 2009, Comput. Aided Des..

[22]  Gerald E. Farin,et al.  Geometric Hermite interpolation with circular precision , 2008, Comput. Aided Des..

[23]  Manabu Sakai,et al.  Osculatory interpolation , 2001, Comput. Aided Geom. Des..

[24]  P. Henrici,et al.  Applied & computational complex analysis: power series integration conformal mapping location of zero , 1988 .

[25]  Bruce R. Piper,et al.  Interpolation with cubic spirals , 2004, Comput. Aided Geom. Des..

[26]  Zulfiqar Habib,et al.  On PH quintic spirals joining two circles with one circle inside the other , 2007, Comput. Aided Des..

[27]  Manabu Sakai,et al.  Inflection points and singularities on planar rational cubic curve segments , 1999, Comput. Aided Geom. Des..