Chapter 8 – Conclusions

Publisher Summary This chapter provides the overall conclusion of the book. The goal of this book is to develop novel techniques for constructing the video table of contents (ToC), video highlights, the video index, and how to integrate them into a unified framework. To achieve these goals, this book introduced a hierarchical representation that includes key frames, shots, groups, and scenes for scripted video and another hierarchical representation that includes play/break, audio-visual markers, highlight candidates, and highlight groups for unscripted video. Different video indexing techniques based on color, texture, shape, spatial layout, and motion activity have been reviewed. A unique and unified framework is presented for video summarization, browsing, and retrieval to support going back and forth between the video ToC and the video index for scripted video, and between video highlights and video index for unscripted video. For sports highlights extraction, it is shown that detection of audience reaction using audio markers is a reasonable solution. For video highlight extraction, success in detecting objects is shown by using some of the domain constraints.

[1]  Wolfgang Banzhaf,et al.  Evolving Dynamics in an Artificial Regulatory Network Model , 2004, PPSN.

[2]  A. C. Kak,et al.  Digital ray tracing in two‐dimensional refractive fields , 1982 .

[3]  Thomas Bäck,et al.  Evolutionary computation: an overview , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[4]  Paul Griffiths,et al.  Evo-Devo Meets the Mind: Towards a Developmental Evolutionary Psychology , 2001 .

[5]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[6]  M. Kaveh,et al.  Reconstructive tomography and applications to ultrasonics , 1979, Proceedings of the IEEE.

[7]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[8]  R. Kuc,et al.  A direct relation between a signal time series and its unwrapped phase , 1982 .

[9]  Thomas Jakobsen,et al.  Advanced Character Physics , 2003 .

[10]  Sanjeev Kumar,et al.  Investigating computational models of development for the construction of shape and form , 2004 .

[11]  R. Newton Scattering theory of waves and particles , 1966 .

[12]  Peter J. Bentley,et al.  Biologically Inspired Evolutionary Development , 2003, ICES.

[13]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[14]  Paulien Hogeweg,et al.  Computing an organism: on the interface between informatic and dynamic processes. , 2002, Bio Systems.

[15]  Marc Ebner,et al.  How neutral networks influence evolvability , 2001, Complex..

[16]  P. Hogeweg Shapes in the Shadow: Evolutionary Dynamics of Morphogenesis , 1999, Artificial Life.

[17]  James F. Greenleaf,et al.  Breast Imaging by Ultrasonic Computer-Assisted Tomography , 1980 .

[18]  L. Darrell Whitley,et al.  Island Model genetic Algorithms and Linearly Separable Problems , 1997, Evolutionary Computing, AISB Workshop.

[19]  U. Polat,et al.  The architecture of perceptual spatial interactions , 1994, Vision Research.

[20]  Robert I. Damper,et al.  Perpetuating evolutionary emergence , 1998 .

[21]  Georges R. Harik,et al.  Foundations of Genetic Algorithms , 1997 .

[22]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[23]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[24]  Roger S. Pressman,et al.  Software Engineering: A Practitioner's Approach , 1982 .

[25]  K. Mano Interrelationship between terms of the Born and Rytov expansions , 1970 .

[26]  S. Kosslyn,et al.  Why are What and Where Processed by Separate Cortical Visual Systems? A Computational Investigation , 1989, Journal of Cognitive Neuroscience.

[27]  David Nahamoo ULTRASONIC DIFFRACTION IMAGING , 1982 .

[28]  Phil Husbands,et al.  Neutral Networks and Evolvability with Complex Genotype-Phenotype Mapping , 2001, ECAL.

[29]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[30]  Julian Francis Miller,et al.  Evolution in materio: looking beyond the silicon box , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[31]  M. Holmes Introduction to Perturbation Methods , 1995 .

[32]  P. Hogeweg,et al.  Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. , 2000, Journal of theoretical biology.

[33]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[34]  E. Niebur,et al.  Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention , 1996, Journal of Cognitive Neuroscience.

[35]  Kurt W. Fleischer,et al.  A Multiple-Mechanism Developmental Model for Defining Self-Organizing Geometric Structures , 1995 .

[36]  T. Metzinger The evolution of evolvability Ruth Garret Millikan Varieties of Meaning: The 2002 Jean Nicod Lectures , 2005, Trends in Cognitive Sciences.

[37]  W. H. Carter,et al.  Reconstruction of inhomogeneous scattering objects from holograms. , 1974, Applied optics.

[38]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[39]  J. Richmond Scattering by a dielectric cylinder of arbitrary cross section shape , 1965 .

[40]  Peter J. Bentley,et al.  Development brings scalability to hardware evolution , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[41]  Giedrius T Buracas,et al.  The Effect of Spatial Attention on Contrast Response Functions in Human Visual Cortex , 2007, The Journal of Neuroscience.

[42]  H. Baltes Inverse source problems in optics , 1978 .

[43]  R. Standish On Complexity and Emergence , 2001, nlin/0101006.

[44]  P. King Medical imaging systems , 1986, Proceedings of the IEEE.

[45]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[46]  D. Krakauer Robustness in Biological Systems: A Provisional Taxonomy , 2006 .

[47]  M. I. Sancer,et al.  A comparison of the born and rytov methods , 1970 .

[48]  Leonardo Franco,et al.  Generalization properties of modular networks: implementing the parity function , 2001, IEEE Trans. Neural Networks.

[49]  A. Devaney A filtered backpropagation algorithm for diffraction tomography. , 1982, Ultrasonic imaging.

[50]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[51]  Julian Francis Miller,et al.  Evolving Developmental Programs for Adaptation, Morphogenesis, and Self-Repair , 2003, ECAL.

[52]  W. Wayt Gibbs,et al.  The unseen genome: gems among the junk. , 2003, Scientific American.

[53]  R. Jacobs Computational studies of the development of functionally specialized neural modules , 1999, Trends in Cognitive Sciences.

[54]  C. Koch,et al.  Flanker effects in peripheral contrast discrimination—psychophysics and modeling , 2001, Vision Research.

[55]  B. T. O'Connor,et al.  TECHNIQUES FOR DETERMINING THE STABILITY OF TWO-DIMENSIONAL RECURSIVE FILTERS AND THEIR APPLICATION TO IMAGE RESTORATION. , 1978 .

[56]  Chris P. Bowers Formation of modules in a computational model of embryogeny , 2005, 2005 IEEE Congress on Evolutionary Computation.

[57]  Tirin Moore,et al.  Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field , 2007, Proceedings of the National Academy of Sciences.

[58]  Chris P. Bowers,et al.  EMBRYOLOGICAL MODELLING OF THE EVOLUTION OF NEURAL ARCHITECTURE , 2005 .

[59]  S. Johnson,et al.  Inverse Scattering Solutions by a Sinc Basis, Multiple Source, Moment Method -- Part II: Numerical Evaluations , 1983, Ultrasonic imaging.

[60]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[61]  Koichi Iwata,et al.  Calculation of Refractive Index Distribution from Interferograms Using the Born and Rytov's Approximation , 1975 .

[62]  T. Meagher,et al.  Evolution — An Introduction , 2000, Heredity.

[63]  Maja J. Matarić,et al.  A Developmental Model for the Evolution of Complete Autonomous Agents , 1996 .

[64]  Andrew M. Tyrrell,et al.  Reliability analysis in self-repairing embryonic systems , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[65]  John A. Bullinaria Generational versus steady-state evolution for optimizing neural network learning , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[66]  J. Goodman Introduction to Fourier optics , 1969 .

[67]  L. Darrell Whitley,et al.  Adding Learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect , 1993, Evolutionary Computation.

[68]  Russell K. Standish,et al.  Open-Ended Artificial Evolution , 2002, Int. J. Comput. Intell. Appl..

[69]  Pj Bentley,et al.  Mechanisms of Oriental Cell Division in Computational Development , 2003 .

[70]  Bruce Edmonds,et al.  What is Complexity? - The philosophy of complexity per se with application to some examples in evolution , 1995 .

[71]  G. Glover,et al.  Reconstruction of Ultrasound Propagation Speed Distributions in Soft Tissue: Time-Of-Flight Tomography , 1977, IEEE Transactions on Sonics and Ultrasonics.

[72]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[73]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[74]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[75]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[76]  Stefano Nolfi,et al.  18 – Artificial life models of neural development , 2003 .

[77]  Mostafa Kaveh,et al.  Tomographic imaging via wave equation inversion , 1982, ICASSP.

[78]  W. H. Carter Computational Reconstruction of Scattering Objects from Holograms , 1970 .

[79]  TanabeKunio Projection method for solving a singular system of linear equations and its applications , 1971 .

[80]  Peter J. Bentley,et al.  Computational Embryology: Past, Present and Future , 2000 .

[81]  A. Kak,et al.  A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered-backpropagation , 1983 .

[82]  J. Miller,et al.  Beyond the Complexity Ceiling : Evolution , Emergence and Regeneration , 2004 .

[83]  A. Cangelosi,et al.  Cell division and migration in a 'genotype' for neural networks (Cell division and migration in neural networks) , 1993 .

[84]  I. Harvey Artiicial Evolution for Real Problems , 1997 .

[85]  J. Greenleaf,et al.  Limited Angle Multifrequency Diffraction Tomography , 1982, IEEE Transactions on Sonics and Ultrasonics.

[86]  R. Gadagkar Nothing in Biology Makes Sense Except in the Light of Evolution , 2005 .

[87]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[88]  D. Nahamoo,et al.  Synthetic Aperature Diffraction Tomography and Its Interpolation-Free Computer Implementation , 1984, IEEE Transactions on Sonics and Ultrasonics.

[89]  John F. Kolen,et al.  Backpropagation is Sensitive to Initial Conditions , 1990, Complex Syst..

[90]  X. Yao Evolving Artificial Neural Networks , 1999 .

[91]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[92]  G T Herman,et al.  ART: mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. , 1973, Journal of theoretical biology.

[93]  Joshua B. Plotkin,et al.  Principles and Parameters of Molecular Robustness , 2003 .

[94]  Victor A. F. Lamme,et al.  Synchrony and covariation of firing rates in the primary visual cortex during contour grouping , 2004, Nature Neuroscience.

[95]  Isamu Kajitani,et al.  Hardware Evolution at Function Level , 1996, PPSN.

[96]  N. Swindale Cortical organization: Modules, Polymaps and mosaics , 1998, Current Biology.

[97]  Chris P. Bowers Simulating Evolution with a Computational Model of Embryogeny: Obtaining Robustness from Evolved Individuals , 2005, ECAL.

[98]  Malcolm Slaney,et al.  Diffraction Tomography , 1983, Other Conferences.

[99]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[100]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[101]  A. J. Devaney,et al.  A Computer Simulation Study of Diffraction Tomography , 1983, IEEE Transactions on Biomedical Engineering.

[102]  B. F. Logan,et al.  The Fourier reconstruction of a head section , 1974 .

[103]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[104]  D. Thieffry,et al.  Modularity in development and evolution. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[105]  Mehrdad Soumekh,et al.  Image reconstruction from frequency domain data on arbitrary contours , 1984, ICASSP.

[106]  Hamid Bolouri,et al.  Designing Development Rules for Artificial Evolution , 1997, ICANNGA.

[107]  Julian Francis Miller,et al.  Evolving a Self-Repairing, Self-Regulating, French Flag Organism , 2004, GECCO.

[108]  Masahiro Okamoto,et al.  Development of a System for the Inference of Large Scale Genetic Networks , 2000, Pacific Symposium on Biocomputing.

[109]  H. Moses,et al.  Calculation of the Scattering Potential from Reflection Coefficients , 1956 .

[110]  E. Wolf Three-dimensional structure determination of semi-transparent objects from holographic data , 1969 .

[111]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[112]  R. Pfeifer,et al.  Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny , 2001 .

[113]  S. L. Lee,et al.  Algebraic Reconstruction of Spatial Distributions of Acoustic Absorption within Tissue from Their Two-Dimensional Acoustic Projections , 1974 .

[114]  Kunihiko Kaneko,et al.  Simulating Physics with Coupled Map Lattices , 1990 .

[115]  D. Trisler,et al.  Cell recognition and pattern formation in the developing nervous system. , 1990, The Journal of experimental biology.

[116]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[117]  M. Soumekh,et al.  Fourier Domain Reconstruction Methods with Application to Diffraction Tomography , 1984 .

[118]  John A. Bullinaria,et al.  Simulating the Evolution of Modular Neural Systems , 2001 .

[119]  J. Bullinaria To Modularize or Not To Modularize ? , 2002 .

[120]  Janet Wiles,et al.  Diversity maintenance on neutral landscapes: an argument for recombination , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[121]  X. Yao,et al.  Combining landscape approximation and local search in global optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[122]  Ehud Meron,et al.  Complex patterns in reaction-diffusion systems: A tale of two front instabilities. , 1994, Chaos.

[123]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[124]  Lee Spector,et al.  Evolving Graphs and Networks with Edge Encoding: Preliminary Report , 1996 .

[125]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[126]  W. Eberhard,et al.  MALE DIMORPHISMS IN BEETLES AND EARWIGS AND THE QUESTION OF DEVELOPMENTAL CONSTRAINTS , 1991, Evolution; international journal of organic evolution.

[127]  T. Taylor Studying Evolution with Self-Replicating Computer Programs , 2007 .

[128]  Julian Francis Miller,et al.  Scalability problems of digital circuit evolution evolvability and efficient designs , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[129]  Larry D. Pyeatt,et al.  A comparison between cellular encoding and direct encoding for genetic neural networks , 1996 .

[130]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[131]  Z Q Lu,et al.  Diffraction Tomography Using Beam Waves: Z-Average Reconstruction , 1984, Ultrasonic imaging.

[132]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[133]  C R Crawford,et al.  ALIASING ARTIFACTS IN COMPUTERIZED TOMOGRAPHY , 1979, Applied optics.

[134]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[135]  B C Coughlin,et al.  Introduction. The evolution of evo-devo biology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[137]  S. Johnson,et al.  Inverse Scattering Solutions by a Sinc Basis, Multiple Source, Moment Method -- Part I: Theory , 1983, Ultrasonic imaging.

[138]  Riccardo Poli,et al.  Parallel genetic algorithm taxonomy , 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410).

[139]  Chi-Hang Lam,et al.  FORMATION AND DYNAMICS OF MODULES IN A DUAL-TASKING MULTILAYER FEED-FORWARD NEURAL NETWORK , 1998 .

[140]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[141]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[142]  John Hughes,et al.  Why Functional Programming Matters , 1989, Comput. J..

[143]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[144]  D. Messer,et al.  An introduction to developmental psychology , 2004 .

[145]  A. J. Devaney,et al.  A new perturbation expansion for inverse scattering from three-dimensional finite-range potentials , 1982 .

[146]  L. Verlet Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions , 1968 .

[147]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[148]  Mehrdad Soumekh,et al.  Algorithms and experimental results in acoutistic tomography using Rytov's approximation , 1983, ICASSP.

[149]  Reese T. Prosser,et al.  Formal solutions of inverse scattering problems. III. , 1969 .

[150]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[151]  Julian Francis Miller,et al.  Evolution in materio: a tone discriminator in liquid crystal , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[152]  Robert Stanton,et al.  Radiological Imaging: The Theory of Image Formation, Detection, and Processing , 1983 .

[153]  Xin Yao,et al.  Optimization by Genetic Annealing , 1991 .

[154]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .

[155]  Michael Oristaglio,et al.  Inversion Procedure for Inverse Scattering within the Distorted-Wave Born Approximation , 1983 .

[156]  Peter J. Bentley,et al.  New trends in evolutionary computation , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[157]  D. J. Vezzetti,et al.  Reconstructions from Scattering Data: Analysis and Improvements of the Inverse Born Approximation , 1979 .

[158]  Joseph B. Keller,et al.  Accuracy and Validity of the Born and Rytov Approximations , 1969 .

[159]  T. Sarkar,et al.  Some mathematical considerations in dealing with the inverse problem , 1981 .

[160]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[161]  Reese T. Prosser,et al.  Formal solutions of inverse scattering problems. IV. Error estimates , 1982 .

[162]  L. E. Larsen,et al.  Limitations of Imaging with First-Order Diffraction Tomography , 1984 .

[163]  Hiroaki Kitano,et al.  A Simple Model of Neurogenesis and Cell Differentiation Based on Evolutionary Large-Scale Chaos , 1994, Artificial Life.

[164]  J. Pepper The evolution of evolvability in genetic linkage patterns. , 2003, Bio Systems.

[165]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[166]  Vimal Singh,et al.  Perturbation methods , 1991 .

[167]  Walter Kohn,et al.  Construction of a Potential from a Phase Shift , 1952 .

[168]  Dov Sagi,et al.  Eccentricity effects on lateral interactions , 2005, Vision Research.

[169]  A. Davison Basic Neurochemistry: Molecular, Cellular, and Medical Aspects , 1989 .

[170]  G. T. Heydt,et al.  Computer Analysis Methods for Power Systems , 1986 .

[171]  William R. Hendee,et al.  Ultrasound Transaxial Tomography by Reconstruction , 1976 .

[172]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[173]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[174]  Peter J. Bentley,et al.  CREATIVE EVOLUTIONARY SYSTEMS , 2001 .

[175]  Anoop Kumar,et al.  Plasticity and reprogramming of differentiated cells in amphibian regeneration , 2002, Nature Reviews Molecular Cell Biology.

[176]  José Tribolet,et al.  A new phase unwrapping algorithm , 1977 .

[177]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[178]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[179]  J. Greenleaf,et al.  ALGEBRAIC RECONSTRUCTION OF SPATIAL DISTRIBUTIONS OF ACOUSTIC VELOCITIES IN TISSUE FROM THEIR TIME-OF-FLIGHT PROFILES. , 1975 .

[180]  Alastair Channon,et al.  Improving and still passing the ALife test: component-normalised activity statistics classify evolution in geb as unbounded , 2002 .

[181]  Xin Yao,et al.  Does extra genetic diversity maintain escalation in a co-evolutionary arms race , 2000 .

[182]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[183]  D. Parisi,et al.  Discontinuity in evolution: how different levels of organization imply preadaptation , 1996 .

[184]  A. Devaney Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[185]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. III. Time-Dependent Self-Correlation Functions , 1970 .

[186]  M. Soumekh,et al.  Signal Processing for Diffraction Tomography , 1984, IEEE Transactions on Sonics and Ultrasonics.

[187]  Uri Polat,et al.  The relationship between the subjective and objective aspects of visual filling-in , 2007, Vision Research.

[188]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[189]  Andrew G. Glen,et al.  APPL , 2001 .

[190]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[191]  Kemper Lewis,et al.  EFFICIENT GLOBAL OPTIMIZATION USING HYBRID GENETIC ALGORITHMS , 2002 .