The Cross-Entropy Method for Combinatorial and Continuous Optimization

We present a new and fast method, called the cross-entropy method, for finding the optimal solution of combinatorial and continuous nonconvex optimization problems with convex bounded domains. To find the optimal solution we solve a sequence of simple auxiliary smooth optimization problems based on Kullback-Leibler cross-entropy, importance sampling, Markov chain and Boltzmann distribution. We use importance sampling as an important ingredient for adaptive adjustment of the temperature in the Boltzmann distribution and use Kullback-Leibler cross-entropy to find the optimal solution. In fact, we use the mode of a unimodal importance sampling distribution, like the mode of beta distribution, as an estimate of the optimal solution for continuous optimization and Markov chains approach for combinatorial optimization. In the later case we show almost surely convergence of our algorithm to the optimal solution. Supporting numerical results for both continuous and combinatorial optimization problems are given as well. Our empirical studies suggest that the cross-entropy method has polynomial in the size of the problem running time complexity.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Alastair J. Walker,et al.  An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.

[6]  N. L. Johnson,et al.  Urn models and their application : an approach to modern discrete probability theory , 1978 .

[7]  Samuel Kotz,et al.  Urn Models and Their Applications: An Approach to Modern Discrete Probability Theory , 1978, The Mathematical Gazette.

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[10]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[11]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[14]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[15]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  Weibo Gong,et al.  Stochastic comparison algorithm for discrete optimization with estimation , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[18]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[19]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[20]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[21]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[22]  László Lovász,et al.  Randomized algorithms in combinatorial optimization , 1993, Combinatorial Optimization.

[23]  Wan Ahmad Tajuddin Seeking Global Minima , 1994 .

[24]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[25]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[26]  B. Fox,et al.  Probabilistic Search with Overrides , 1995 .

[27]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[28]  János D. Pintér,et al.  Global optimization in action , 1995 .

[29]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[30]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[31]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[32]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[33]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[34]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[35]  Gerasimos Potamianos,et al.  Stochastic approximation algorithms for partition function estimation of Gibbs random fields , 1997, IEEE Trans. Inf. Theory.

[36]  R. Rubinstein,et al.  Quick estimation of rare events in stochastic networks , 1997 .

[37]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[38]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[39]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[40]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[41]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..