A comparison of the accuracy of different functionals

Abstract The errors in the computed geometries, zero-point energies, and atomization energies of molecules containing only first and second row atoms are compared for several levels of theory, including Hartree-Fock, second-order Moller-Plesset perturbation theory (MP2), and density functional theory (DFT) using five different functionals, including two hybrid functionals. The 6-31G ∗ and 6-311 + G(3df, 2p) basis sets are used. Overall, the B3LYP hybrid functional yields the best results.

[1]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[2]  Curtis L. Janssen,et al.  Concerning zero‐point vibrational energy corrections to electronic energies , 1991 .

[3]  Christopher E. Dateo,et al.  The molecular structure of cis-FONO , 1994 .

[4]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[5]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[6]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[7]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[8]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[9]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[10]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[11]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[12]  P. Jensen,et al.  The potential surface and stretching frequencies of X̃ 3B1 methylene (CH2) determined from experiment using the Morse oscillator‐rigid bender internal dynamics Hamiltonian , 1988 .

[13]  K. Kohata,et al.  Molecular structure of hydrazine as studied by gas electron diffraction , 1982 .

[14]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[15]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[16]  Charles W. Bauschlicher,et al.  Theoretical Study of Fe(CO)n , 1995 .

[17]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[18]  C. Bauschlicher,et al.  Successive Binding Energies of Fe(CO)5 , 1994 .

[19]  C. W. Bauschlicher,et al.  A modification of the Gaussian‐2 approach using density functional theory , 1995 .