Hydrogen plasma reduced potassium titanate as a high power and ultralong lifespan anode material for sodium-ion batteries

The abundance and low cost of sodium potentially enable application of sodium ion batteries for grid-scale energy storage. Consequently, anode materials with high power, long lifespan, and safe operation are highly desired. In this work, we successfully fabricate black K2Ti6O13 nanowires as an anode material that exhibits the desired properties. The black K2Ti6O13 nanowires are prepared via a hydrothermal method followed by post calcination and final hydrogen plasma treatment. The black K2Ti6O13 anode delivers a high reversible capacity of 249 mA h g−1. Impressively, it could sustain 20 000 cycles without apparent capacity fade. The first-principles calculation results suggest that the electrical conductivity of K2Ti6O13 would be improved while the sodiation energy barrier could be reduced after introducing oxygen vacancies.

[1]  Yunhui Huang,et al.  A high-voltage honeycomb-layered Na4NiTeO6 as cathode material for Na-ion batteries , 2017 .

[2]  Christopher W. Foster,et al.  Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors , 2017 .

[3]  M. Jaroniec,et al.  Na2Ti3O7@N‐Doped Carbon Hollow Spheres for Sodium‐Ion Batteries with Excellent Rate Performance , 2017, Advanced materials.

[4]  Zhe Hu,et al.  Carbon‐Coated Na3.32Fe2.34(P2O7)2 Cathode Material for High‐Rate and Long‐Life Sodium‐Ion Batteries , 2017, Advanced materials.

[5]  Q. Peng,et al.  Hydrogenated Core–Shell MAX@K2Ti8O17 Pseudocapacitance with Ultrafast Sodium Storage and Long‐Term Cycling , 2017 .

[6]  R. Hu,et al.  Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. , 2017, ACS nano.

[7]  Xiulei Ji,et al.  NASICON‐Structured Materials for Energy Storage , 2017, Advanced materials.

[8]  Feng Wu,et al.  Nature-Inspired Na2Ti3O7 Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[9]  H. Wu,et al.  Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO2-Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors. , 2017, ACS nano.

[10]  Yuliang Cao,et al.  Yolk-Shell TiO2@C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[11]  Jesse S. Ko,et al.  Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode. , 2017, ACS applied materials & interfaces.

[12]  Qiuying Xia,et al.  Black mesoporous Li4Ti5O12−δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries , 2016 .

[13]  Hongsen Li,et al.  An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials , 2016 .

[14]  Yongyao Xia,et al.  Ultra-long Na2Ti3O7 nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries , 2016 .

[15]  Yi Cui,et al.  Subzero‐Temperature Cathode for a Sodium‐Ion Battery , 2016, Advanced materials.

[16]  Yunhui Huang,et al.  Integrated Intercalation‐Based and Interfacial Sodium Storage in Graphene‐Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel , 2016 .

[17]  Hongsen Li,et al.  Flexible Sodium‐Ion Pseudocapacitors Based on 3D Na2Ti3O7 Nanosheet Arrays/Carbon Textiles Anodes , 2016 .

[18]  Yan Yu,et al.  Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering , 2016 .

[19]  Yong Xu,et al.  Hydrogenation Driven Conductive Na2Ti3O7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. , 2016, Nano letters.

[20]  Zaiping Guo,et al.  Na2 Ti6 O13 Nanorods with Dominant Large Interlayer Spacing Exposed Facet for High-Performance Na-Ion Batteries. , 2016, Small.

[21]  T. Zhai,et al.  Ultrafine potassium titanate nanowires: a new Ti-based anode for sodium ion batteries. , 2016, Chemical communications.

[22]  Z. G. Liu,et al.  Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce3+ Sites , 2016 .

[23]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[24]  A. Manthiram,et al.  TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage , 2016 .

[25]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[26]  Hongsen Li,et al.  Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors , 2015 .

[27]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[28]  Xiaobo Ji,et al.  Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres , 2015 .

[29]  Xin Liu,et al.  In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. , 2015, Chemical communications.

[30]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[31]  Xiulei Ji,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[32]  Liquan Chen,et al.  Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries , 2015 .

[33]  Yang‐Kook Sun,et al.  Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries , 2015 .

[34]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[35]  Xing Xie,et al.  Use of low cost and easily regenerated Prussian Blue cathodes for efficient electrical energy recovery in a microbial battery , 2015 .

[36]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[37]  Kazuki Nakanishi,et al.  Hierarchically Porous Li4Ti5O12 Anode Materials for Li‐ and Na‐Ion Batteries: Effects of Nanoarchitectural Design and Temperature Dependence of the Rate Capability , 2015 .

[38]  Lei Liu,et al.  NaTiO2: a layered anode material for sodium-ion batteries , 2015 .

[39]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[40]  Seung M. Oh,et al.  High electrochemical performances of microsphere C-TiO₂ anode for sodium-ion battery. , 2014, ACS applied materials & interfaces.

[41]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[42]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[43]  Hao Gong,et al.  Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. , 2013, Chemical communications.

[44]  Guozhong Cao,et al.  Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries , 2012, Advanced materials.

[45]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[46]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[47]  T. Fujitani,et al.  Oxidation of a Zn-deposited Cu(1 1 1) surface studied by XPS and STM , 2002 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .