Fiber Surfaces: Generalizing Isosurfaces to Bivariate Data

Scientific visualization has many effective methods for examining and exploring scalar and vector fields, but rather fewer for bivariate fields. We report the first general purpose approach for the interactive extraction of geometric separating surfaces in bivariate fields. This method is based on fiber surfaces: surfaces constructed from sets of fibers, the multivariate analogues of isolines. We show simple methods for fiber surface definition and extraction. In particular, we show a simple and efficient fiber surface extraction algorithm based on Marching Cubes. We also show how to construct fiber surfaces interactively with geometric primitives in the range of the function. We then extend this to build user interfaces that generate parameterized families of fiber surfaces with respect to arbitrary polygons. In the special case of isovalue‐gradient plots, fiber surfaces capture features geometrically for quantitative analysis that have previously only been analysed visually and qualitatively using multi‐dimensional transfer functions in volume rendering. We also demonstrate fiber surface extraction on a variety of bivariate data.

[1]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[2]  Hans Hagen,et al.  Volume rendering with multidimensional peak finding , 2012, 2012 IEEE Pacific Visualization Symposium.

[3]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[4]  Jean-Philip Piquemal,et al.  Characterizing Molecular Interactions in Chemical Systems , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  David C. Banks,et al.  Complex-valued contour meshing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[6]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[7]  Arie E. Kaufman,et al.  Cumulative Heat Diffusion Using Volume Gradient Operator for Volume Analysis , 2012, IEEE Transactions on Visualization and Computer Graphics.

[8]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[9]  Dirk J. Lehmann,et al.  Discontinuities in Continuous Scatter Plots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[10]  Alexander Rice,et al.  Real-Time Volume Rendering of Four Channel Data Sets , 2004, IEEE Visualization 2004.

[11]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[12]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[13]  Jian Zhang,et al.  Automating Transfer Function Design with Valley Cell‐Based Clustering of 2D Density Plots , 2012, Comput. Graph. Forum.

[14]  Osamu Saeki,et al.  Topology of Singular Fibers of Differentiable Maps , 2004, Lecture notes in mathematics.

[15]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[16]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[17]  Herbert Edelsbrunner,et al.  Reeb spaces of piecewise linear mappings , 2008, SCG '08.

[18]  Anna Vilanova,et al.  Visualization of boundaries in volumetric data sets using LH histograms , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  L. Zhou,et al.  GuideME: Slice‐guided Semiautomatic Multivariate Exploration of Volumes , 2014, Comput. Graph. Forum.

[20]  Nancy Argüelles,et al.  Author ' s , 2008 .

[21]  Vijay Natarajan,et al.  Simplification of Jacobi Sets , 2011, Topological Methods in Data Analysis and Visualization.

[22]  Xin Zhao,et al.  Multi-dimensional Reduction and Transfer Function Design using Parallel Coordinates , 2010, VG@Eurographics.

[23]  Helmut Doleisch,et al.  SimVis: Interactive visual analysis of large and time-dependent 3D simulation data , 2007, 2007 Winter Simulation Conference.

[24]  David J. Duke,et al.  Joint Contour Nets: Computation and properties , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[25]  M. Levoy Volume Rendering Display of Surfaces from Volume Data , 1988 .

[26]  Hans Hagen,et al.  Morse-Smale decomposition of multivariate transfer function space for separably-sampled volume rendering , 2013, Comput. Aided Geom. Des..

[27]  Valerio Pascucci,et al.  Multivariate volume visualization through dynamic projections , 2014, 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV).

[28]  Christof Rezk-Salama,et al.  High-Level User Interfaces for Transfer Function Design with Semantics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[29]  G. Kindlmann Transfer Functions in Direct Volume Rendering : Design , Interface , Interaction , 2002 .

[30]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[31]  Dirk J. Lehmann,et al.  Discontinuities in Continuous Scatterplots , 2010 .

[32]  Xiaoru Yuan,et al.  Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates , 2011, 2011 IEEE Pacific Visualization Symposium.

[33]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[34]  David J. Duke,et al.  Joint Contour Nets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[35]  Kwan-Liu Ma,et al.  RGVis: region growing based techniques for volume visualization , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[36]  R. Wenger Isosurfaces: Geometry, Topology, and Algorithms , 2013 .

[37]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[38]  David S. Ebert,et al.  Structuring Feature Space: A Non-Parametric Method for Volumetric Transfer Function Generation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[39]  Daniel Weiskopf,et al.  Continuous Scatterplots , 2008, IEEE Transactions on Visualization and Computer Graphics.

[40]  David H. Laidlaw,et al.  Geometric model extraction from magnetic resonance volume data , 1996 .

[41]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.