Robust Preconditioning of Large , Sparse , Symmetric Eigenvalue

Iterative methods for solving large, sparse, symmetric eigenvalue problems often encounter convergence diiculties because of ill-conditioning. The Generalized Davidson method is a well known technique which uses eigenvalue preconditioning to surmount these diiculties. Preconditioning the eigenvalue problem entails more subtleties than for linear systems. In addition, the use of an accurate conventional preconditioner (i.e., as used in linear systems) may cause deterioration of convergence or convergence to the wrong eigenvalue. The purpose of this paper is to assess the quality of eigenvalue preconditioning and to propose strategies to improve robustness. Numerical experiments for some ill-conditioned cases connrm the robustness of the approach.

[1]  J. Olsen,et al.  Convergence studies of atomic properties from variational methods , 1993 .

[2]  Ronald B. Morgan,et al.  Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems , 1993, SIAM J. Sci. Comput..

[3]  R. Morgan,et al.  Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .

[4]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[5]  Beresford N. Parlett,et al.  The Software Scene in the Extraction of Eigenvalues from Sparse Matrices , 1984 .

[6]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.

[7]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[8]  D. Szyld Criteria for Combining Inverse and Rayleigh Quotient Iteration , 1988 .

[9]  J. Miller Numerical Analysis , 1966, Nature.

[10]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[11]  D. Scott The Advantages of Inverted Operators in Rayleigh–Ritz Approximations , 1982 .

[12]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[13]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[14]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[15]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[16]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[17]  A. Stathopoulos,et al.  A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix , 1994 .

[18]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[19]  Ernest R. Davidson,et al.  Super-matrix methods , 1989 .

[20]  Charlotte Froese Fischer,et al.  The Hartree-Fock method for atoms: A numerical approach , 1977 .

[21]  J. H. Wilkinson,et al.  IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS , 1983 .

[22]  J. H. van Lenthe,et al.  A space‐saving modification of Davidson's eigenvector algorithm , 1990 .

[23]  C. Fischer,et al.  Spline algorithms for continuum functions , 1989 .

[24]  A. Stathopoulos,et al.  Reducing synchronization on the parallel Davidson method for the large sparse, eigenvalue problem , 1993, Supercomputing '93.

[25]  T. Kalamboukis Davidson's algorithm with and without perturbation corrections , 1980 .