Limits and Optimization of Power Input or Output of Actual Thermal Cycles

In classical thermodynamic, maximum power obtained from system (or minimum power supplied to system) defined as availability (exergy), but availability term is only used for reversible systems. In reality, there is no reversible system, all systems are irreversible, because reversible cycles doesn’t include constrains like time or size and they operates in quasi-equilibrium state. Purpose of this study is to define limits of the all basic thermodynamic cycles and to provide finite-time exergy models for irreversible cycles and to obtain the maximum (or minimum) available power for irreversible (finite-time exergy) cycles. In this study, available power optimization and performance limits were defined all basic irreversible thermodynamic cycles, by using first and second law of thermodynamic. Finally, these results were evaluated in terms of cycles’ first and second law efficiency, COP, power output (or input) and exergy destruction.

[1]  Adnan Parlak,et al.  Comparative performance analysis of irreversible Dual and Diesel cycles under maximum power conditions , 2005 .

[2]  Lingen Chen,et al.  Performance analysis for a real closed regenerated Brayton cycle via methods of finite-time thermodynamics , 1999 .

[3]  Bjarne Andresen,et al.  Availability for finite-time processes. General theory and a model , 1983 .

[4]  Shuhn-Shyurng Hou,et al.  Heat transfer effects on the performance of an air standard Dual cycle , 2004 .

[5]  Fengrui Sun,et al.  Finite time thermodynamic modeling and analysis for an irreversible Atkinson cycle , 2010 .

[6]  Yingru Zhao,et al.  Optimum performance analysis of an irreversible Diesel heat engine affected by variable heat capacities of working fluid , 2007 .

[7]  Santiago Velasco,et al.  Unified working regime of irreversible Carnot-like heat engines with nonlinear heat transfer laws , 2002 .

[8]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[9]  Fengrui Sun,et al.  Exergy-based ecological optimization for a generalized irreversible Carnot refrigerator , 2006 .

[10]  Fengrui Sun,et al.  Effect of heat transfer law on the ecological optimisation of a generalised irreversible Carnot heat pump , 2005 .

[11]  Souvik Bhattacharyya,et al.  Optimizing an irreversible Diesel cycle — fine tuning of compression ratio and cut-off ratio , 2000 .

[12]  Chih Wu,et al.  Finite-time power limit for solar-radiant Ericsson engines in space applications , 1998 .

[13]  Fengrui Sun,et al.  Optimal performance of an endoreversible three-mass-reservoir chemical pump with diffusive mass transfer law , 2010 .

[14]  Lingen Chen,et al.  Effect ZOF heat transfer law on finite-time exergoeconomic performance of Carnot heat pump , 1998 .

[15]  Fengrui Sun,et al.  Maximum work output of multistage continuous Carnot heat engine system with finite reservoirs of thermal capacity and radiation between heat source and working fluid , 2010 .

[16]  Sanford Klein,et al.  An Explanation for Observed Compression Ratios in Internal Combustion Engines , 1991 .

[17]  Fengrui Sun,et al.  The effects of variable specific heats of working fluid on the performance of an irreversible Otto cycle , 2005 .

[18]  Lingen Chen,et al.  Exergetic performance optimisation of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 1: thermodynamic model and parametric analysis , 2011 .

[19]  Fengrui Sun,et al.  The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law , 2005 .

[20]  Bahri Sahin,et al.  A comparative performance analysis of irreversible regenerative reheating Joule-Brayton engines under maximum power density and maximum power conditions , 1998 .

[21]  Fengrui Sun,et al.  Finite-time exergy with a finite heat reservoir and generalized radiative heat transfer law , 2010 .

[22]  L.Berrin Erbay,et al.  Optimization of the irreversible Stirling heat engine , 1999 .

[23]  Yasin Ust,et al.  Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion , 2007 .

[24]  Fengrui Sun,et al.  Power density optimisation of an irreversible variable-temperature heat reservoir closed intercooled regenerated Brayton cycle , 2009 .

[25]  L.Berrin Erbay,et al.  Analysis of the stirling heat engine at maximum power conditions , 1997 .

[26]  Bahri Sahin,et al.  Efficiency of a Joule-Brayton engine at maximum power density , 1995 .

[27]  Fengrui Sun,et al.  Finite time exergy with generalised heat transfer law , 2012 .

[28]  Chih Wu,et al.  Work and power optimization of a finite-time Brayton cycle , 1990 .

[29]  Fengrui Sun,et al.  Exergetic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 2: Exergy output rate and exergy efficiency optimization , 2012 .

[30]  Santiago Velasco,et al.  Optimum performance of a regenerative Brayton thermal cycle , 1997 .

[31]  Fengrui Sun,et al.  Optimal configuration of a class of endoreversible heat-engines for maximum power-output with linear phenomenological heat-transfer law , 2007 .

[32]  Fengrui Sun,et al.  Ecological optimization for generalized irreversible Carnot refrigerators , 2005 .

[33]  Fengrui Sun,et al.  Ecological performance of an endoreversible Carnot refrigerator with complex heat transfer law , 2011 .

[34]  Shuhn-Shyurng Hou,et al.  Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations , 2007 .

[35]  Fengrui Sun,et al.  Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities , 1997 .

[36]  Lingen Chen,et al.  Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions , 2002 .

[37]  Yingru Zhao,et al.  Optimization criteria for the important parameters of an irreversible Otto heat-engine , 2006 .

[38]  Yasin Ust,et al.  The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs , 2006 .

[39]  Jincan Chen,et al.  An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis , 2007 .

[40]  Stanislaw Sieniutycz,et al.  Carnot problem of maximum work from a finite resource interacting with environment in a finite time , 1999 .

[41]  Lingen Chen,et al.  Second law analysis and parametric study for combined Brayton and two parallel inverse Brayton cycles , 2009 .

[42]  Yasin Ust,et al.  Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion , 2005 .

[43]  Bahri Sahin,et al.  Maximum power density analysis of an irreversible Joule - Brayton engine , 1996 .

[44]  S. C. Kaushik,et al.  Finite time optimization of an endoreversible and irreversible vapour absorption refrigeration system , 2003 .

[45]  P. L. Curto-Risso,et al.  Optimizing the operation of a spark ignition engine: Simulation and theoretical tools , 2009 .

[46]  Fengrui Sun,et al.  Hamilton-Jacobi-Bellman equations and dynamic programming for power-optimization of a multistage heat engine system with generalized convective heat transfer law , 2011 .

[47]  Fengrui Sun,et al.  Heat transfer effect on the performance of an endoreversible closed intercooled regenerated Brayton cycle , 2004 .

[48]  A. Al-Sarkhi,et al.  Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine , 2006 .

[49]  Fengrui Sun,et al.  Optimal paths of piston motion of irreversible diesel cycle for minimum entropy generation , 2011 .

[50]  Fengrui Sun,et al.  Endoreversible Modeling and Optimization of a Multistage Heat Engine System with a Generalized Heat Transfer Law via Hamilton-Jacobi-Bellman Equations and Dynamic Programming , 2011 .

[51]  L.Berrin Erbay,et al.  Analysis of an irreversible Ericsson engine with a realistic regenerator , 1999 .

[52]  J. C. Denton,et al.  Thermal cycles in classical thermodynamics and nonequilibrium thermodynamics in contrast with finite time thermodynamics , 2002 .

[53]  Yasin Ust,et al.  Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine , 2006 .

[54]  R. Stephen Berry,et al.  Power and efficiency limits for internal combustion engines via methods of finite‐time thermodynamics , 1993 .

[55]  Sergio Sibilio,et al.  Recent Advances in Finite-Time Thermodynamics , 1999 .

[56]  Fernando Angulo-Brown,et al.  A non-endoreversible Otto cycle model: improving power output and efficiency , 1996 .

[57]  L. Chen,et al.  Ecological optimisation of a generalised irreversible Carnot refrigerator for a generalised heat transfer law , 2007 .

[58]  Fengrui Sun,et al.  Optimal performance of an endoreversible Carnot heat pump , 1997 .

[59]  Bihong Lin,et al.  Performance analysis and parametric optimum design of an irreversible Diesel heat engine , 2006 .

[60]  Fengrui Sun,et al.  Effects of mass transfer laws on finite time exergy , 2010 .

[61]  P. L. Curto-Risso,et al.  Theoretical and simulated models for an irreversible Otto cycle , 2008 .

[62]  Lingen Chen,et al.  Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle , 1998 .

[63]  Abdul Khaliq Finite-time heat-transfer analysis and generalized power-optimization of an endoreversible Rankine heat-engine , 2004 .

[64]  Stanislaw Sieniutycz,et al.  Finite time generalization of thermal exergy , 1998 .

[65]  Fengrui Sun,et al.  OPTIMAL ECOLOGICAL PERFORMANCE OF A GENERALIZED IRREVERSIBLE CARNOT HEAT PUMP WITH COMPLEX HEAT TRANSFER LAW , 2009 .

[66]  Lingen Chen,et al.  Exergetic efficiency optimization for real regenerated air refrigerators , 2011 .

[67]  Jun Li,et al.  Optimum work in real systems with a class of finite thermal capacity reservoirs , 2009, Math. Comput. Model..

[68]  L. Chen,et al.  Performance analysis of an irreversible Brayton heat engine , 1997 .

[69]  Lingen Chen,et al.  Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle , 2012, Entropy.

[70]  Chih Wu,et al.  Power limit of an endoreversible Ericsson cycle with regeneration , 1996 .

[71]  Hasbi Yavuz,et al.  The maximum cooling density of a realistic Stirling refrigerator , 1998 .

[72]  Jun Li,et al.  Ecological optimization of a generalized irreversible Carnot refrigerator in the case of Q∝ (Δ T n ) m , 2012 .

[73]  Fengrui Sun,et al.  Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law , 2010 .

[74]  Fengrui Sun,et al.  Power and efficiency analysis of an endoreversible closed intercooled regenerated Brayton cycle , 2004 .

[75]  Fengrui Sun,et al.  Performance analysis of a closed regenerated Brayton heat pump with internal irreversibilities , 1999 .

[76]  Fengrui Sun,et al.  Extremal work of an endoreversible system with two finite thermal capacity reservoirs , 2009 .

[77]  Fengrui Sun,et al.  Exergetic efficiency optimization for an irreversible quantum Brayton refrigerator with spin systems , 2010 .

[78]  Jincan Chen,et al.  Efficiency bound of a solar-driven Stirling heat engine system , 1998 .

[79]  Fengrui Sun,et al.  Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle , 2006 .

[80]  Fengrui Sun,et al.  Optimal temperatures and maximum power output of a complex system with linear phenomenological heat transfer law , 2009 .

[81]  R. Stephen Berry,et al.  Finite‐time thermodynamics: Exergy and optimization of time‐constrained processes , 1994 .

[82]  Lingen Chen,et al.  Power and efficiency optimization for combined Brayton and inverse Brayton cycles , 2009 .

[83]  L. Beda Thermal physics , 1994 .

[84]  R. L. Kiang,et al.  Power performance of a nonisentropic Brayton cycle , 1991 .

[85]  Fengrui Sun,et al.  Endoreversible radiative heat engine configuration for maximum efficiency , 2010 .

[86]  Cha'o-Kuang Chen,et al.  Power Optimization of an Irreversible Brayton Heat Engine , 1997 .

[87]  Feng Wu,et al.  Work output and efficiency of a reversible quantum Otto cycle , 2010 .

[88]  Cha'o-Kuang Chen,et al.  Power optimization of an endoreversible regenerative Brayton cycle , 1996 .

[89]  Fengrui Sun,et al.  Performance comparison of an irreversible closed Brayton cycle under maximum power density and maximum power conditions , 2002 .

[90]  Stanislaw Sieniutycz,et al.  Hamilton-Jacobi-Bellman theory of dissipative thermal availability , 1997 .

[91]  Lingen Chen,et al.  Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid , 2005 .

[92]  Fengrui Sun,et al.  Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle , 2001 .

[93]  Ali Volkan Akkaya,et al.  Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion , 2011 .

[94]  Fengrui Sun,et al.  Second-law analysis and optimisation for combined Brayton and inverse Brayton cycles , 2007 .

[95]  S. C. Kaushik,et al.  Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines , 2002 .

[96]  Shaojun Xia,et al.  Power-optimization of non-ideal energy converters under generalized convective heat transfer law via , 2011 .

[97]  Stanislaw Sieniutycz,et al.  Generalized Carnot problem of maximum work in finite time via Hamilton–Jacobi–Bellman theory , 1998 .

[98]  Fengrui Sun,et al.  Power density optimisation of an endoreversible closed variable-temperature heat reservoir intercooled regenerated Brayton cycle , 2006 .

[99]  Fengrui Sun,et al.  Effect of a complex generalised heat transfer law on the ecological performance of an endoreversible Carnot heat pump , 2009 .

[100]  L. Chen,et al.  The power and efficiency characteristics for an irreversible Otto cycle , 2003 .