19 – Sensors for food flavour and freshness: electronic noses, tongues and testers

[1]  C. Gill,et al.  The development of aerobic spoilage flora on meat stored at chill temperatures. , 1977, The Journal of applied bacteriology.

[2]  Christoph Hagleitner,et al.  Application-specific sensor systems based on CMOS chemical microsensors , 2000 .

[3]  Maria Luz Rodriguez-Mendez,et al.  Array of sensors based on conducting polymers for the quality control of the aroma of the virgin olive oil , 2000 .

[4]  R. Timms Physical properties of oils and mixtures of oils , 1985 .

[5]  A. Šetkus,et al.  Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis , 2000 .

[6]  H. V. Shurmer,et al.  Basic limitations for an electronic nose , 1990 .

[7]  G. Billek,et al.  Quality assessment of used frying fats: A comparison of four methods , 1978 .

[8]  Gas-sensitive p-GaAs field effect device with catalytic gate , 2000 .

[9]  R. Paolesse,et al.  Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine , 2000 .

[10]  Pietro Siciliano,et al.  Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array , 2000 .

[11]  Giuseppe Ferri,et al.  An electronic nose for food analysis , 1997 .

[12]  Tetsuo Aishima,et al.  Chemometrics in flavor research , 1991 .

[13]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[14]  K. Robards,et al.  Rancidity and its measurement in edible oils and snack foods. A review. , 1988, The Analyst.

[15]  Gerd Sulz,et al.  Thin-film SnO2 sensor arrays controlled by variation of contact potential—a suitable tool for chemometric gas mixture analysis in the TLV range , 1997 .

[16]  Linda M. Bartoshuk,et al.  Taste mixtures: Is mixture suppression related to compression? , 1975, Physiology & Behavior.

[17]  Joseph R. Stetter,et al.  Detection and discrimination of coliform bacteria with gas sensor arrays , 2000 .

[18]  Stefan Schütz,et al.  FIELD EFFECT TRANSISTOR-INSECT ANTENNA JUNCTION , 1997 .

[19]  Manfred Glesner,et al.  Fuzzy logic and neuro-systems assisted intelligent sensors , 1998 .

[20]  R. W. Marshall,et al.  Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. , 1997 .

[21]  C Latrasse,et al.  Electronic noses: specify or disappear , 2000 .

[22]  J. Gardner Detection of vapours and odours from a multisensor array using pattern recognition Part 1. Principal component and cluster analysis , 1991 .

[23]  Julian W. Gardner,et al.  Strategies for Mimicking Olfaction: The Next Generation of Electronic Noses? , 1998 .

[24]  Matti Huotari,et al.  Biosensing by insect olfactory receptor neurons , 2000 .

[25]  Kiyoshi Toko,et al.  Electronic Sensing of Tastes , 1998 .

[26]  K Toko,et al.  Responses of lipid membranes of taste sensor to astringent and pungent substances. , 1994, Chemical senses.

[27]  J. Gardner,et al.  Intelligent vapour discrimination using a composite 12-element sensor array , 1990 .

[28]  Erika Kress-Rogers,et al.  Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment , 1996 .

[29]  Johannes Lerchner,et al.  Calorimetric detection of volatile organic compounds , 2000 .

[30]  C. Gill Substrate limitation of bacterial growth at meat surfaces. , 1976, The Journal of applied bacteriology.

[31]  Krishna C. Persaud,et al.  Arrays of broad specificity films for sensing volatile chemicals , 1997 .

[32]  Alisa Rudnitskaya,et al.  Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions , 1997 .

[33]  R. M. Langdon,et al.  Resonator sensors-a review , 1985 .

[34]  I. Karube,et al.  Determination of Hypoxanthine in Fish Meat with an Enzyme Sensor , 1983 .

[35]  R. H. Dalrymple,et al.  POSTMORTEM GLYCOLYSIS IN PRERIGOR GROUND BOVINE AND RABBIT MUSCLE , 1975 .

[36]  B Dittmann,et al.  Strategies for the development of reliable QA/QC methods when working with mass spectrometry-based chemosensory systems , 2000 .

[37]  I. Karube,et al.  Biosensors fob food industry , 1987 .

[38]  Erika Kress-Rogers,et al.  Development and evaluation of a novel sensor for the in situ assessment of frying oil quality , 1990 .

[39]  A. Turner Applications of direct electron transfer bioelectrochemistry in sensors and fuel cells , 1983 .

[40]  Patrick Mielle,et al.  Gas Sensors Arrays (‘Electronic Noses’): a study about the speed/accuracy ratio , 2000 .

[41]  K. C. Persaud,et al.  SENSOR ARRAYS USING CONDUCTING POLYMERS FOR AN ARTIFICIAL NOSE , 1992 .

[42]  J. Gardner,et al.  Integrated tin oxide odour sensors , 1991 .

[43]  R. A. McGill,et al.  Sorbent polymer materials for chemical sensors and arrays , 1997 .

[44]  L. Shelef EFFECT OF GLUCOSE ON THE BACTERIAL SPOILAGE OF BEEF , 1977 .

[45]  Brigitte Dittmann,et al.  A new chemical sensor on a mass spectrometric basis , 1998 .

[46]  Naresh Magan,et al.  Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data , 2000 .

[47]  Fabrizio Davide,et al.  Tasting of beverages using an electronic tongue , 1997 .

[48]  Ingemar Lundström,et al.  Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose , 2000 .

[49]  Michael J. Sailor,et al.  Integration of porous silicon chips in an electronic artificial nose , 2000 .

[50]  R. Müller High electronic selectivity obtainable with nonselective chemosensors , 1991 .

[51]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[52]  A. Dieffenbacher,et al.  Frying performance of palm oil liquid fractions , 1981 .

[53]  Yoshitaka Ito,et al.  High-spatial resolution LAPS , 1998 .

[54]  C. Gill,et al.  Development of bacterial spoilage at adipose tissue surfaces of fresh meat , 1980, Applied and environmental microbiology.

[55]  Ingemar Lundström,et al.  Evaluation of a multiple gas mixture with a simple MOSFET gas sensor array and pattern recognition , 1990 .

[56]  S. Rock,et al.  Properties of frying fat. I. The relationship of viscosity to the concentration of non-urea adducting fatty acids , 1966 .

[57]  L. Huo,et al.  Gas sensitivity of composite Langmuir-Blodgett films of Fe2O3 nanoparticle-copper phthalocyanine , 2000 .

[58]  D. Sen,et al.  Studies on deep fat frying-changes during heating of oil. , 1979 .

[59]  Antonella Macagnano,et al.  Multicomponent analysis on polluted waters by means of an electronic tongue , 1997 .

[60]  Teruaki Katsube,et al.  High speed chemical image sensor with digital LAPS system , 1996 .

[61]  H. V. Shurmer,et al.  Integrated Arrays of Gas Sensors Using Conducting Polymers with Molecular Sieves , 1991 .

[62]  Anthony Turner Biosensors in the food industry , 1987 .

[63]  W. H. Morrison,et al.  Hydrogenated sunflowerseed oil: Oxidative stability and polymer formation on heating , 1978 .

[64]  S. Chang,et al.  Chemical reactions involved in deep fat frying of foods: VI. Characterization of nonvolatile decomposition products of trilinolein , 1973, Journal of the American Oil Chemists Society.

[65]  C. Gill,et al.  The ecology of bacterial spoilage of fresh meat at chill temperatures. , 1978, Meat science.

[66]  Teruaki Katsube Light Adressable Potentiometric Chemical Sensing System , 1999 .

[67]  A. Turner,et al.  Ferrocene-mediated enzyme electrode for amperometric determination of glucose. , 1984, Analytical chemistry.

[68]  M. Hirschfelder,et al.  Using multivariate statistics to predict sensory quality of marjoram from instrumental data , 2000 .

[69]  Eduard Llobet,et al.  Fruit ripeness monitoring using an Electronic Nose , 2000 .

[70]  Udo Weimar,et al.  Optimised sensor arrays with chromatographic preseparation: characterisation of alcoholic beverages , 2000 .