Automatic reconstruction of roman housing architecture

The creation of 3D models of ancient sites has often been focused on their major monuments only. This is logical, given the high costs of traditional 3D modeling. Thus, to efficiently reconstruct entire sites like cities, a large number of domestic buildings and workshops need to be generated automatically. Their appearance should follow the aesthetic and statutory architectural rules of the corresponding epoch. From various GIS (Geographical Information Systems) data given as input, such as population density, land usage, street network and building footprints, our system assigns type and style of the buildings to its footprints and calls the corresponding shape grammar rules to efficiently create detailed large-scale models. The shape grammar rules which are responsible for the creation of the actual building geometries are manually derived from photos and plans of remaining buildings, archaeological excavation data, and (historical) paintings. To complete the model of the reconstructed urban zone, streets are automatically embedded according to the given GIS data and appropriate vegetation is added based on simple procedural rules.

[1]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[2]  Luc Van Gool,et al.  A generic 3D model for automated building roof reconstruction , 2002 .

[3]  George Papagiannakis,et al.  Mixing virtual and real scenes in the site of ancient Pompeii , 2005, Comput. Animat. Virtual Worlds.

[4]  Björn Gesemann,et al.  Die Straßen der antiken Stadt Pompeji : Entwicklung und Gestaltung , 1996 .

[5]  Wilhelmina F. Jashemski,et al.  The Gardens of Pompeii, Herculaneum and the Villas Destroyed by Vesuvius , 1979 .

[6]  Michael Wimmer,et al.  Instant architecture , 2003, ACM Trans. Graph..

[7]  José Pinto Duarte Customizing mass housing : a discursive grammar for Siza's Malagueira houses , 2001 .

[8]  William J. Mitchell,et al.  The Palladian Grammar , 1978 .

[9]  Andrew P. Witkin,et al.  Interactive physically-based manipulation of discrete/continuous models , 1995, SIGGRAPH.

[10]  U Flemming,et al.  More Than the Sum of Parts: The Grammar of Queen Anne Houses , 1987 .

[11]  George Stiny,et al.  Shape Grammars and the Generative Specification of Painting and Sculpture , 1971, IFIP Congress.

[12]  Pascal Müller,et al.  Procedural modeling of cities , 2001, SIGGRAPH.

[13]  David B. Arnold,et al.  Rapid procedural-modelling of architectural structures , 2001, VAST '01.

[14]  H. Koning,et al.  The Language of the Prairie: Frank Lloyd Wright's Prairie Houses , 1981 .

[15]  Claire De Ruyt Björn Gesemann, Die Strassen der antiken Stadt Pompeji. Entwicklung und Gestaltung , 1998 .

[16]  C.L.J. Peterse,et al.  Bouwkundige studies van huizen in Pompeii: muurwerk, maatvoering en ontwerp , 1993 .

[17]  L. Richardson Pompeii : an architectural history , 1990 .

[18]  R. Maculet,et al.  Archipel : Intelligence artificielle et conception assistee par ordinateur en architecture. representation des connaissances spatiales,algebre de manhattan, et raisonnement spatial avec contraintes , 1991 .

[19]  Christoph P. J. Ohlig,et al.  De aquis pompeiorum : das Castellum Aquae in Pompeji : Herkunft, Zuleitung und Verteilung des Wassers , 2000 .

[20]  Daniel Thalmann,et al.  A case study of a virtual audience in a reconstruction of an ancient Roman odeon in Aphrodisias , 2004, VAST.

[21]  Jean-Pierre Adam Roman buildings : materials and techniques , 1999 .

[22]  Milan FTÁ,et al.  Low Cost High Quality 3D Virtual City Models , 2004 .

[23]  A. Wallace-Hadrill Houses and Society in Pompeii and Herculaneum , 1994 .