A Transient Global-Local Generalized FEM for Parabolic and Hyperbolic PDEs with Multi-Space/Time Scales

[1]  K. Pan,et al.  An efficient extrapolation multigrid method based on a HOC scheme on nonuniform rectilinear grids for solving 3D anisotropic convection–diffusion problems , 2023, Computer Methods in Applied Mechanics and Engineering.

[2]  Carlos Armando Duarte,et al.  A high-order generalized Finite Element Method for multiscale structural dynamics and wave propagation , 2021 .

[3]  John Dolbow,et al.  Scale-bridging with the extended/generalized finite element method for linear elastodynamics , 2021, Computational Mechanics.

[4]  Yufeng Xu,et al.  An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients , 2021, Appl. Math. Comput..

[5]  Y. Bazilevs,et al.  A theoretical framework for discontinuity capturing: Joining variational multiscale analysis and variation entropy theory , 2020 .

[6]  Claudio Canuto,et al.  A multi-timestep Robin-Robin domain decomposition method for time dependent advection-diffusion problems , 2019, Appl. Math. Comput..

[7]  C. Duarte,et al.  A two-scale generalized FEM for the evaluation of stress intensity factors at spot welds subjected to thermomechanical loads , 2019, Engineering Fracture Mechanics.

[8]  Lam H. Nguyen,et al.  A residual-driven local iterative corrector scheme for the multiscale finite element method , 2019, J. Comput. Phys..

[9]  A. Masud,et al.  Variationally derived discontinuity capturing methods: Fine scale models with embedded weak and strong discontinuities , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  Carlos Armando Duarte,et al.  A two-scale generalized finite element method for parallel simulations of spot welds in large structures , 2018, Computer Methods in Applied Mechanics and Engineering.

[11]  Petr N. Vabishchevich,et al.  Two-level schemes for the advection equation , 2017, J. Comput. Phys..

[12]  Ertugrul Taciroglu,et al.  Variationally consistent coupling of non-matching discretizations for large deformation problems , 2017 .

[13]  Houman Owhadi,et al.  Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients , 2016, J. Comput. Phys..

[14]  Carlos Armando Duarte,et al.  A two‐scale generalized finite element approach for modeling localized thermoplasticity , 2016 .

[15]  Jeong-Ho Kim,et al.  A new generalized finite element method for two‐scale simulations of propagating cohesive fractures in 3‐D , 2015 .

[16]  Carlos Armando Duarte,et al.  Generalized finite element approaches for analysis of localized thermo‐structural effects , 2015 .

[17]  C. Duarte,et al.  Generalized finite element analysis using the preconditioned conjugate gradient method , 2015 .

[18]  Carlos Armando Duarte,et al.  Bridging multiple structural scales with a generalized finite element method , 2015 .

[19]  Arun Prakash,et al.  Computationally efficient multi-time-step method for partitioned time integration of highly nonlinear structural dynamics , 2014 .

[20]  Patrick Henning,et al.  Localized Orthogonal Decomposition Techniques for Boundary Value Problems , 2013, SIAM J. Sci. Comput..

[21]  K. Bathe,et al.  An explicit time integration scheme for the analysis of wave propagations , 2013 .

[22]  K. Bathe,et al.  Performance of an implicit time integration scheme in the analysis of wave propagations , 2013 .

[23]  P. O’Hara,et al.  Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients , 2013 .

[24]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[25]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[26]  C. Duarte,et al.  A generalized finite element method with global-local enrichment functions for confined plasticity problems , 2012 .

[27]  Dae-Jin Kim,et al.  Analysis and improvements of global–local enrichments for the Generalized Finite Element Method , 2012 .

[28]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[29]  Carlos Armando Duarte,et al.  An improved nonintrusive global–local approach for sharp thermal gradients in a standard FEA platform , 2012 .

[30]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[31]  Dae-Jin Kim,et al.  A two-scale approach for the analysis of propagating three-dimensional fractures , 2012 .

[32]  Michael Presho,et al.  Operator Splitting Multiscale Finite Volume Element Method for Two-Phase Flow with Capillary Pressure , 2011 .

[33]  D. Z. Turner,et al.  A stabilized formulation for the advection–diffusion equation using the Generalized Finite Element Method , 2011 .

[34]  Nahil Sobh,et al.  Parallel simulations of three-dimensional cracks using the generalized finite element method , 2011 .

[35]  Carlos Armando Duarte,et al.  Transient analysis of sharp thermal gradients using coarse finite element meshes , 2011 .

[36]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[37]  C. Duarte,et al.  Investigation of allowable time-step sizes for generalized finite element analysis of the transient heat equation , 2010 .

[38]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[39]  T. Fries,et al.  On time integration in the XFEM , 2009 .

[40]  Carlos Armando Duarte,et al.  Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients , 2009 .

[41]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[42]  Patrick Jenny,et al.  Iterative multiscale finite-volume method , 2008, J. Comput. Phys..

[43]  Dae-Jin Kim,et al.  Analysis of Interacting Cracks Using the Generalized Finite Element Method With Global-Local Enrichment Functions , 2008 .

[44]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..

[45]  Yalchin Efendiev,et al.  Multiscale simulations of porous media flows in flow-based coordinate system , 2008 .

[46]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[47]  Daoud S. Daoud,et al.  Overlapping Schwarz wave form relaxation for the solution of coupled and decoupled system of convection diffusion reaction equation , 2007, Appl. Math. Comput..

[48]  Yalchin Efendiev,et al.  An Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media , 2006, Multiscale Model. Simul..

[49]  Robert B. Haber,et al.  A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance , 2006 .

[50]  Erik Burman,et al.  A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..

[51]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[52]  Patrick Jenny,et al.  Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media , 2005, Multiscale Model. Simul..

[53]  Jacob Fish,et al.  Space?time multiscale model for wave propagation in heterogeneous media , 2004 .

[54]  Arif Masud,et al.  A multiscale/stabilized finite element method for the advection–diffusion equation , 2004 .

[55]  John E. Dolbow,et al.  Solving thermal and phase change problems with the eXtended finite element method , 2002 .

[56]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[57]  Wei Shyy,et al.  Development of pressure-based composite multigrid methods for complex fluid flows , 1996 .

[58]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[59]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[60]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[61]  Yan Zhang,et al.  Multiple scale finite element methods , 1991 .

[62]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .