Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP

The 70-kilodalton (kDa) heat-shock proteins (Hsp70s) are ubiquitous molecular chaperones essential for cellular protein folding and proteostasis. Each Hsp70 has two functional domains: a nucleotide-binding domain (NBD), which binds and hydrolyzes ATP, and a substrate-binding domain (SBD), which binds extended polypeptides. NBD and SBD interact little when in the presence of ADP; however, ATP binding allosterically couples the polypeptide- and ATP-binding sites. ATP binding promotes polypeptide release; polypeptide rebinding stimulates ATP hydrolysis. This allosteric coupling is poorly understood. Here we present the crystal structure of an intact ATP-bound Hsp70 from Escherichia coli at 1.96-Å resolution. The ATP-bound NBD adopts a unique conformation, forming extensive interfaces with an SBD that has changed radically, having its α-helical lid displaced and the polypeptide-binding channel of its β-subdomain restructured. These conformational changes, together with our biochemical assays, provide a structural explanation for allosteric coupling in Hsp70 activity.

[1]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[2]  Wayne A. Hendrickson,et al.  Insights into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1 , 2007, Cell.

[3]  M. Karplus,et al.  Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations , 1991, Proteins.

[4]  M. Mayer,et al.  Mechanics of Hsp70 chaperones enables differential interaction with client proteins , 2011, Nature Structural &Molecular Biology.

[5]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[6]  Lila M Gierasch,et al.  The changing landscape of protein allostery. , 2006, Current opinion in structural biology.

[7]  A. Roujeinikova,et al.  Allosteric Coupling between the Lid and Interdomain Linker in DnaK Revealed by Inhibitor Binding Studies , 2008, Journal of bacteriology.

[8]  Lila M Gierasch,et al.  Conserved, Disordered C Terminus of DnaK Enhances Cellular Survival upon Stress and DnaK in Vitro Chaperone Activity* , 2011, The Journal of Biological Chemistry.

[9]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[10]  Shawn Y. Stevens,et al.  Structural insights into substrate binding by the molecular chaperone DnaK , 2000, Nature Structural Biology.

[11]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[12]  C. Lima,et al.  Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. , 2000, Molecular cell.

[13]  J Osipiuk,et al.  Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. , 1997, Structure.

[14]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[15]  M. Mayer,et al.  Allostery in the Hsp70 chaperone proteins. , 2013, Topics in current chemistry.

[16]  L. Gierasch,et al.  Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. , 1999, Journal of molecular biology.

[17]  P. Christen,et al.  Kinetics of molecular chaperone action. , 1994, Science.

[18]  W. Burkholder,et al.  Mutations in the C-terminal fragment of DnaK affecting peptide binding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A Valencia,et al.  Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Andreas Bracher,et al.  Molecular chaperones in protein folding and proteostasis , 2011, Nature.

[21]  C. Seidel,et al.  The conformational dynamics of the mitochondrial Hsp70 chaperone. , 2010, Molecular cell.

[22]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[23]  Matthias J. Feige,et al.  Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions , 2011, Nature Structural &Molecular Biology.

[24]  Wayne A. Hendrickson,et al.  Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data , 2013, Acta crystallographica. Section D, Biological crystallography.

[25]  M. Mayer,et al.  Amide Hydrogen Exchange Reveals Conformational Changes in Hsp70 Chaperones Important for Allosteric Regulation* , 2006, Journal of Biological Chemistry.

[26]  L. Gierasch,et al.  Direct Comparison of a Stable Isolated Hsp70 Substrate-binding Domain in the Empty and Substrate-bound States* , 2006, Journal of Biological Chemistry.

[27]  E. Zuiderweg,et al.  Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate , 2009, Proceedings of the National Academy of Sciences.

[28]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[29]  J Kuriyan,et al.  Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. , 1997, Science.

[30]  E. Zuiderweg,et al.  Allostery in Hsp70 chaperones is transduced by subdomain rotations. , 2009, Journal of molecular biology.

[31]  Bernd Bukau,et al.  Allosteric Regulation of Hsp70 Chaperones Involves a Conserved Interdomain Linker* , 2006, Journal of Biological Chemistry.

[32]  R. Sousa,et al.  Structural basis of interdomain communication in the Hsc70 chaperone. , 2005, Molecular cell.

[33]  C. Georgopoulos,et al.  Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein. , 1993, The Journal of biological chemistry.

[34]  Xinping Xu,et al.  Unique Peptide Substrate Binding Properties of 110-kDa Heat-shock Protein (Hsp110) Determine Its Distinct Chaperone Activity* , 2011, The Journal of Biological Chemistry.

[35]  A. Horwich,et al.  The Hsp 70 and Hsp 60 Review Chaperone Machines , 1998 .

[36]  Stanislas Leibler,et al.  An interdomain sector mediating allostery in Hsp70 molecular chaperones , 2010, Molecular systems biology.

[37]  J. Reinstein,et al.  Nucleotide-induced Conformational Changes in the ATPase and Substrate Binding Domains of the DnaK Chaperone Provide Evidence for Interdomain Communication (*) , 1995, The Journal of Biological Chemistry.

[38]  E. Craig,et al.  Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[40]  Lila M Gierasch,et al.  Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. , 2007, Molecular cell.

[41]  J. Rothman,et al.  Peptide binding and release by proteins implicated as catalysts of protein assembly. , 1989, Science.

[42]  E. Craig,et al.  Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo , 1996, Molecular and cellular biology.

[43]  Hong Wang,et al.  NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. , 1998, Biochemistry.

[44]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[45]  K D Cowtan,et al.  Density modification for macromolecular phase improvement. , 1999, Progress in biophysics and molecular biology.

[46]  K. Schulten,et al.  Principal Component Analysis and Long Time Protein Dynamics , 1996 .

[47]  Roman Kityk,et al.  Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. , 2012, Molecular cell.

[48]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[49]  S. Rüdiger,et al.  Interaction of Hsp70 chaperones with substrates , 1997, Nature Structural Biology.

[50]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[51]  Nathaniel Echols,et al.  The Phenix software for automated determination of macromolecular structures. , 2011, Methods.

[52]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[53]  K. Flaherty,et al.  Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. , 1994, The Journal of biological chemistry.

[54]  Bernd Bukau,et al.  Allosteric regulation of Hsp70 chaperones by a proline switch. , 2006, Molecular cell.

[55]  A. Hinck,et al.  Structural basis of J cochaperone binding and regulation of Hsp70. , 2007, Molecular cell.

[56]  M. Mayer Gymnastics of molecular chaperones. , 2010, Molecular cell.

[57]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[58]  C. Hsiao,et al.  Crystal structures of the 70 kDa heat shock proteins in domain disjoining conformation , 2008 .

[59]  Lila M. Gierasch,et al.  An Interdomain Energetic Tug-of-War Creates the Allosterically Active State in Hsp70 Molecular Chaperones , 2012, Cell.

[60]  G. Walker,et al.  DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Andreas Bracher,et al.  Structural Basis for the Cooperation of Hsp70 and Hsp110 Chaperones in Protein Folding , 2008, Cell.

[62]  Randy J. Read,et al.  Using SAD data in Phaser , 2011, Acta crystallographica. Section D, Biological crystallography.

[63]  Lila M. Gierasch,et al.  Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones , 2011, Proceedings of the National Academy of Sciences.

[64]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[65]  Qinglian Liu,et al.  The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. , 2011, Journal of molecular biology.