Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems

A Skeleton-stabilized ImmersoGeometric Analysis technique is proposed for incompressible viscous flow problems with moderate Reynolds numbers. The proposed formulation fits within the framework of the finite cell method, where essential boundary conditions are imposed weakly using a Nitsche-type method. The key idea of the proposed formulation is to stabilize the jumps of high-order derivatives of variables over the skeleton of the background mesh. The formulation allows the use of identical finite-dimensional spaces for the approximation of the pressure and velocity fields in immersed domains. The stability issues observed for inf–sup stable discretizations of immersed incompressible flow problems are avoided with this formulation. For B-spline basis functions of degree [Formula presented] with highest regularity, only the derivative of order [Formula presented] has to be controlled, which requires specification of only a single stabilization parameter for the pressure field. The Stokes and Navier–Stokes equations are studied numerically in two and three dimensions using various immersed test cases. Oscillation-free solutions and high-order optimal convergence rates can be obtained. The formulation is shown to be stable even in limit cases where almost every elements of the physical domain is cut, and hence it does not require the existence of interior cells. In terms of the sparsity pattern, the algebraic system has a considerably smaller stencil than counterpart approaches based on Lagrange basis functions. This important property makes the proposed skeleton-stabilized technique computationally practical. To demonstrate the stability and robustness of the method, we perform a simulation of fluid flow through a porous medium, of which the geometry is directly extracted from 3D [Formula presented] scan data.

[1]  P. Hansbo,et al.  Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .

[2]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[3]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[4]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  S. Hassanizadeh,et al.  Pore‐scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates , 2016 .

[7]  Yuri Bazilevs,et al.  Three-dimensional dynamic simulation of elastocapillarity , 2018 .

[8]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[9]  Alessandro Reali,et al.  Mixed isogeometric finite cell methods for the stokes problem , 2017 .

[10]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[11]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[12]  E. H. Brummelen,et al.  Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations , 2015, 1510.02441.

[13]  Mats G. Larson,et al.  $L^2$-error estimates for finite element approximations of boundary fluxes , 2014 .

[14]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[15]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[16]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[17]  Ernst Rank,et al.  The p-Version of the Finite Element and Finite Cell Methods , 2017 .

[18]  K. Höllig Finite element methods with B-splines , 1987 .

[19]  Santiago Badia,et al.  The aggregated unfitted finite element method for elliptic problems , 2017, Computer Methods in Applied Mechanics and Engineering.

[20]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[21]  Wulf G. Dettmer,et al.  A stabilised immersed boundary method on hierarchical b-spline grids , 2016 .

[22]  Cv Clemens Verhoosel,et al.  Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .

[23]  F. Auricchio,et al.  Skeleton-stabilized IsoGeometric Analysis: High-regularity interior-penalty methods for incompressible viscous flow problems , 2017, Computer Methods in Applied Mechanics and Engineering.

[24]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[25]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[26]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[27]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[28]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[29]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[30]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[31]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[32]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[33]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[34]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[35]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[36]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[37]  Christoph Lehrenfeld,et al.  A note on the stability parameter in Nitsche's method for unfitted boundary value problems , 2017, Comput. Math. Appl..

[38]  Ferdinando Auricchio,et al.  A framework for designing patient‐specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis , 2018, International journal for numerical methods in biomedical engineering.

[39]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[40]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[41]  Maxim A. Olshanskii,et al.  Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements , 2016 .

[42]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[43]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[44]  Benedikt Schott,et al.  A stabilized Nitsche cut finite element method for the Oseen problem , 2016, 1611.02895.

[45]  T. Hoang Isogeometric and immersogeometric analysis of incompressible flow problems , 2018 .

[46]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[47]  Giancarlo Sangalli,et al.  Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique , 2013 .

[48]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[49]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[50]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[51]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[52]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .