Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems
暂无分享,去创建一个
Alessandro Reali | Ferdinando Auricchio | Clemens V. Verhoosel | Chao-Zhong Qin | F. Auricchio | A. Reali | E. H. van Brummelen | T. Hoang | C. Verhoosel | C. Qin | Tuong Hoang | E. Harald van Brummelen
[1] P. Hansbo,et al. Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .
[2] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[3] Dominik Schillinger,et al. The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .
[4] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] S. Hassanizadeh,et al. Pore‐scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates , 2016 .
[7] Yuri Bazilevs,et al. Three-dimensional dynamic simulation of elastocapillarity , 2018 .
[8] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[9] Alessandro Reali,et al. Mixed isogeometric finite cell methods for the stokes problem , 2017 .
[10] Tomas Bengtsson,et al. Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .
[11] Yuri Bazilevs,et al. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.
[12] E. H. Brummelen,et al. Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations , 2015, 1510.02441.
[13] Mats G. Larson,et al. $L^2$-error estimates for finite element approximations of boundary fluxes , 2014 .
[14] G. Sangalli,et al. A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .
[15] D. Schillinger,et al. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .
[16] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.
[17] Ernst Rank,et al. The p-Version of the Finite Element and Finite Cell Methods , 2017 .
[18] K. Höllig. Finite element methods with B-splines , 1987 .
[19] Santiago Badia,et al. The aggregated unfitted finite element method for elliptic problems , 2017, Computer Methods in Applied Mechanics and Engineering.
[20] Endre Süli,et al. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .
[21] Wulf G. Dettmer,et al. A stabilised immersed boundary method on hierarchical b-spline grids , 2016 .
[22] Cv Clemens Verhoosel,et al. Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .
[23] F. Auricchio,et al. Skeleton-stabilized IsoGeometric Analysis: High-regularity interior-penalty methods for incompressible viscous flow problems , 2017, Computer Methods in Applied Mechanics and Engineering.
[24] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[25] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[26] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[27] Ernst Rank,et al. The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.
[28] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[29] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[30] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[31] R. Rannacher,et al. Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .
[32] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[33] P. Hansbo,et al. Fictitious domain finite element methods using cut elements , 2012 .
[34] Fehmi Cirak,et al. Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .
[35] André Massing,et al. A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..
[36] Benedikt Schott,et al. A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .
[37] Christoph Lehrenfeld,et al. A note on the stability parameter in Nitsche's method for unfitted boundary value problems , 2017, Comput. Math. Appl..
[38] Ferdinando Auricchio,et al. A framework for designing patient‐specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis , 2018, International journal for numerical methods in biomedical engineering.
[39] Peter Hansbo,et al. Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .
[40] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[41] Maxim A. Olshanskii,et al. Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements , 2016 .
[42] Michael E. Mortenson,et al. Geometric Modeling , 2008, Encyclopedia of GIS.
[43] Yuri Bazilevs,et al. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.
[44] Benedikt Schott,et al. A stabilized Nitsche cut finite element method for the Oseen problem , 2016, 1611.02895.
[45] T. Hoang. Isogeometric and immersogeometric analysis of incompressible flow problems , 2018 .
[46] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[47] Giancarlo Sangalli,et al. Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique , 2013 .
[48] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[49] Brummelen van Eh,et al. Flux evaluation in primal and dual boundary-coupled problems , 2011 .
[50] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[51] Ernst Rank,et al. The finite cell method for three-dimensional problems of solid mechanics , 2008 .
[52] Ernst Rank,et al. Geometric modeling, isogeometric analysis and the finite cell method , 2012 .