Reconstituting human somitogenesis in vitro

[1]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[2]  R. Mitter,et al.  Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro , 2020, bioRxiv.

[3]  A. van Oudenaarden,et al.  An in vitro model of early anteroposterior organization during human development , 2020, Nature.

[4]  Zachary D. Smith,et al.  Epigenetic regulator function through mouse gastrulation , 2020, Nature.

[5]  Long Guo,et al.  Recapitulating the human segmentation clock with pluripotent stem cells , 2020, Nature.

[6]  A. Meissner,et al.  Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites , 2020, Science.

[7]  A. van Oudenaarden,et al.  Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids , 2020, Nature.

[8]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[9]  R. Stewart,et al.  An In Vitro Human Segmentation Clock Model Derived from Embryonic Stem Cells , 2019, Cell reports.

[10]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[11]  Hatice S. Kaya-Okur,et al.  CUT&Tag for efficient epigenomic profiling of small samples and single cells , 2019, Nature Communications.

[12]  Jonathan Touboul,et al.  In vitro characterization of the human segmentation clock , 2018, bioRxiv.

[13]  Samuel L. Wolock,et al.  Scrublet: computational identification of cell doublets in single-cell transcriptomic data , 2018, bioRxiv.

[14]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[15]  Johannes Stegmaier,et al.  Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust , 2018, Development.

[16]  H. Kori,et al.  Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information. , 2017, Genes & development.

[17]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[18]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[19]  Atsushi Miyawaki,et al.  ScaleS: an optical clearing palette for biological imaging , 2015, Nature Neuroscience.

[20]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[21]  R. Gasser,et al.  The Virtual Human Embryo Project: A Resource for the Study of Human Embryology , 2012 .

[22]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[23]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[24]  S. Yamanaka,et al.  A more efficient method to generate integration-free human iPS cells , 2011, Nature Methods.

[25]  Shifeng Xue,et al.  Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning , 2011, Cell.

[26]  Richard Baldock,et al.  The HUDSEN Atlas: a three‐dimensional (3D) spatial framework for studying gene expression in the developing human brain , 2010, Journal of anatomy.

[27]  H. Takeda,et al.  Emergence of traveling waves in the zebrafish segmentation clock , 2010, Development.

[28]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[29]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[30]  Ryoichiro Kageyama,et al.  Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Richard Baldock,et al.  3 dimensional modelling of early human brain development using optical projection tomography , 2004, BMC Neuroscience.

[32]  O. Pourquié The Segmentation Clock: Converting Embryonic Time into Spatial Pattern , 2003, Science.

[33]  J. Hecksher-Sørensen,et al.  Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies , 2002, Science.

[34]  Y. Saga,et al.  The making of the somite: molecular events in vertebrate segmentation , 2001, Nature Reviews Genetics.

[35]  Y. Bessho,et al.  Dynamic expression and essential functions of Hes7 in somite segmentation. , 2001, Genes & development.

[36]  R. Ho,et al.  Zebrafish lunatic fringe demarcates segmental boundaries , 2001, Mechanisms of Development.

[37]  N. Hata,et al.  An integrated visualization system for surgical planning and guidance using image fusion and an open MR , 2001, Journal of magnetic resonance imaging : JMRI.

[38]  A. Kispert,et al.  Cloning and expression analysis of the mouse T-box gene Tbx18 , 2001, Mechanisms of Development.

[39]  C. Nüsslein-Volhard,et al.  Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. , 2000, Genes & development.

[40]  Olivier Pourquié,et al.  The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos , 1998, Current Biology.

[41]  Yvonne A. Evrard,et al.  lunatic fringe is an essential mediator of somite segmentation and patterning , 1998, Nature.

[42]  O. Pourquié,et al.  Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis , 1997, Cell.

[43]  B. Herrmann,et al.  A mouse gene of the paired-related homeobox class expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system , 1997, Development Genes and Evolution.

[44]  R. Beddington,et al.  Chimeric analysis of T (Brachyury) gene function. , 1993, Development.

[45]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[46]  E. C. Zeeman,et al.  A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. , 1976, Journal of theoretical biology.